
Introduction
VL53L3CX is a Time-of-Flight (ToF) ranging sensor module.

The purpose of this user manual is to describe the integration model and the set of functions to call to get ranging data using the
VL53L3CX bare driver.

VL53L3CX Time-of-Flight ranging module with multi object detection

UM2778

User manual

UM2778 - Rev 1 - September 2020
For further information contact your local STMicroelectronics sales office.

www.st.com

1 VL53L3CX system overview

VL53L3CX system is composed of the VL53L3CX module and a driver running on the host.
This document describes the driver functions accessible to the Host, to control the device and get the ranging
data for integration with non-linux hosts.

Figure 1. VL53L3CX system

Host
VL53L3CX System

VL53L3CX
module

VL53L3CX
Driver

I2C

Note: The present document describes the implemented and validated functions. Any other function available in the
drivers should not be used if not described in this document.
The bare driver is an implementation of a set of functions required to use the VL53L3CX device. It makes minimal
assumptions on the OS integration and services. As such, sequencing of actions, execution/threading model,
platform adaptation, and device structures allocation are not part of the bare driver implementation but left open to
the integrator.
The sequencing of bare driver calls must follow a set of rules, defined in this document.

UM2778
VL53L3CX system overview

UM2778 - Rev 1 page 2/25

2 Ranging functional description

This section briefly describes the functional capabilities of VL53L3CX ranging device.

2.1 Ranging sequence

The device is running with a handshake mechanism, based on a standard interrupt management scheme.
After each ranging, the host acquires the ranging data and enables the next ranging by clearing the interrupt. This
process is referred to as the handshake mechanism.
Next ranging is then triggered if the current one is finished and if the host has cleared the previous pending
interrupt.
The interrupt mechanism allows faster data transfer, without losing any ranging value due to communication or
asynchronism issues. During the handshake phase, the host performs some data processing.
The ranging sequence is functionally described in the figure below.

UM2778
Ranging functional description

UM2778 - Rev 1 page 3/25

Figure 2. VL53L3CX ranging sequence overview

HANDSHAKE

HANDSHAKE

HANDSHAKE

HANDSHAKE

Init

Range1

Power Up &
XSHUT

released

Boot

Ranging Start

Range2

Range3

Get Range1 Data

Setup range 3
Clear interrupt range 1

Interrupt raised

Interrupt raised

AND

Interrupt
cleared

Get Range2 Data

Interrupt raised

Setup range 4
Clear interrupt range 2

AND

Interrupt raised

AND

Range4

Range5

Interrupt raised

AND

Interrupt raised

AND

Range6

Interrupt
cleared

Interrupt
cleared

Interrupt
cleared

Interrupt
cleared

Data
processing

Data
processing

Get Range3 Data

Setup range 5
Clear interrupt range3

Data
processing

Get Range4 Data

Setup range 6
Clear interrupt range4

Data
processing

Bare Driver
internal action

Key

VL53L3CX
internal action

Host action

HANDSHAKE

Get and Ignore
ranging data

Clear interrupt init
Setup range 2

HANDSHAKE

Interrupt
cleared

Get Range5 Data

Setup range 7
Clear interrupt range5

Data
processing

Handshake sequence allows the computation of internal parameters and apply them for next range.

UM2778
Ranging sequence

UM2778 - Rev 1 page 4/25

The handshake must be performed by the user of the bare driver. The delay to enable a new ranging after a new
measurement has been received is key to overall system measurement rate.

2.2 Timing considerations

Timings are presented in Figure 3. Ranging sequence and timing targets.
The host can get the latest available ranging during the duration (ranging timing budget) of the current range.
If a delay to clear the interrupt is introduced by the host, the next ranging will be stalled until the pending interrupt
is cleared.

Note: Timings indicated in Figure 3. Ranging sequence and timing targets are typical timings.
The host can change the default timing budget by using a dedicated driver function described in Chapter 5.1:
Timing budget on page 14. Host can decide to change timing budget either to synchronize on the application or to
increase ranging accuracy.
In the following figure, the “Boot”, “SW standby” and “Init” lasts 40ms. This time is needed to perform a correct
initialization of the device, and it is independent from the platform or the used timing budget. The first range,
“Range1”, is not valid, being the wrap-around check not possible. This means that the first valid ranging value is
“Range2”, available after 40 ms plus two time the timing budget duration.

Figure 3. Ranging sequence and timing targets

Ge
t R

an
ge

2

Ge
t R

an
ge

3

Da
ta

In
it

St
ar

t

POWER
SUPPLY

XSHUT
PIN

Range1Boot

Ge
t R

an
ge

1

40ms

Ranging
Timing
Budget

Ranging
Timing
Budget

NOT TO SCALE

Ranging
Timing
Budget

INTERRUPT
PIN

HOST
DRIVER
CALLS

Se
tu

p
ra

ng
e3

Cl

ea
r i

nt
er

ru
pt

1

Se
tu

p
ra

ng
e1

Cl

ea
r i

nt
er

ru
pt

SW
standby

Se
tu

p
ra

ng
e4

Cl

ea
r i

nt
er

ru
pt

2

HW
standby

SYSTEM
STATE

Range3Range2Init

UM2778
Timing considerations

UM2778 - Rev 1 page 5/25

3 Bare driver basic functions description

This section describes the driver functions calls flow that should be followed to perform a ranging measurement
using the VL53L3CX.
The VL53L3CX driver are used in two classes of applications:
• Factory applications used for device calibration, typically at end product manufacturing test (factory flow)
• Field applications, which gather all end-user applications using the VL53L3CX device (ranging flow)

3.1 Bare driver

Bare driver factory flow is illustrated in the following figure.

Figure 4. VL53L3CX API ranging flow (factory)

Host calls driver
function

DataInit()

PerformRefSpadManagement()

PerformOffsetCalibration()

WaitDeviceBooted()

PerformXtalkCalibration()

Key

Host calls Optional
driver function

GetCalibrationData()

Save part calibration data

Bare driver ranging flow is illustrated in the following figure.

UM2778
Bare driver basic functions description

UM2778 - Rev 1 page 6/25

Figure 5. VL53L3CX API ranging flow (field)

WaitMeasurementDataReady()

Interrupt received

StopMeasurement()

Host calls driver
function

Host action

GetMeasurementDataReady()

DataInit()

StartMeasurement()

SetCalibrationData()

Interrupt modeHost polling mode
Polling/

interrupt

Continue
? CONTINUE

Data result Driver internal
action

Checks
interrupt status

ClearInterruptAndStartMeasurement()

Clears
interrupt

Enables next
ranging

GetMultiRangingData()

Data

Polls on
interrupt status

Driver polling mode

WaitDeviceBooted()

SetDistanceMode()

Key

Host calls Optional
driver function

UM2778
Bare driver

UM2778 - Rev 1 page 7/25

3.2 System initialization

The following section shows the API functions calls required to perform the system initialization, before starting a
measurement.

3.2.1 Wait for boot
VL53LX_WaitDeviceBooted() function ensures that the device is booted and ready.
It is not mandatory to call this function.

Note: This function blocks the host execution. This function should not block for more than 4 ms, assuming:
• 400 kHz I2C frequency
• 2 ms latency per transaction

3.2.2 Data init
The VL53LX_DataInit() function must be called each time the device exits from the “initial boot” state. It performs
device initialization. After calling the VL53LX_DataInit() function the calibration data have to be loaded using the
function VL53LX_SetCalibrationData().

UM2778
System initialization

UM2778 - Rev 1 page 8/25

4 Ranging with VL53L3CX

On non-Linux hosts, the user of the bare driver sequences calls to the driver in a way that is appropriate to the
application needs, the platform capabilities and the bare driver call sequence rules.

4.1 Start a measurement

VL53LX_StartMeasurement() function must be called to start a measurement.

4.2 Wait for a result: polling or interrupt

There are 3 ways to know that a measurement is available. The host can:
1. call a polling function
2. poll on a driver function
3. wait for a physical interrupt

4.2.1 Driver polling to get the result status
The function VL53LX_WaitMeasurementDataReady() is polling on an internal status until a measurement is
ready.

Note: This function is blocking, as internal polling is performed.

4.2.2 Host polling to get the result status
Host can poll on the function VL53LX_GetMeasurementDataReady() to know when a new measurement is ready.
This function is not blocking.

4.2.3 Using physical interrupt
An alternative and preferred way to get the ranging status is to use the physical interrupt output. By default,
GPIO1 is going low when a new measurement is ready.
This pin is an output pin only, there is no input interrupt pin on this device.
Interrupt must be cleared by calling driver function VL53LX_ClearInterruptAndStartMeasurement().

4.3 Get measurement

Multiple objects can be detected per ranging, and measurement data is reported per object
VL53LX_GetMultiRangingData() can be used to get ranging data when multiple objects are in the field of view.
When calling this function to get the device multiple ranging results, a structure called
VL53LX_MultiRangingData_t is returned.

4.4 Stop a measurement

In continuous mode, the host can stop the measurement by calling VL53LX_StopMeasurement() function.
If the stop request occurs during a range measurement, then the measurement is aborted immediately.

UM2778
Ranging with VL53L3CX

UM2778 - Rev 1 page 9/25

4.5 Ranging data structures

The structure named VL53LX_MultiRangingData_t contains the following data applicable to all targets detected:
• TimeStamp: not implemented.
• StreamCount: this 8-bit integer gives a counter incremented at each range. The value starts at 0,

incrementing 1 by 1 up to 255. When it reaches 255, it starts again from 128 to 255.
• NumberOfObjectsFound: 8 bit integer value that gives the number of objects found.
• RangeData[VL53LX_MAX_RANGE_RESULTS]: a table of structure of type VL53LX_TargetRangeData_t.

The maximum number of targets is given by VL53LX_MAX_RANGE_RESULTS, and is by default equal to 4.
• HasXtalkValueChanged: 8 bit integer value that indicates if the crosstalk value has been changed.
• EffectiveSpadRtnCount: 16 bit integer that returns the effective Single photon avalanche diode (SPAD) count

for the current ranging. To obtain real value it should be divided by 256.

One structure per target detected (up to 4 by default) called VL53LX_TargetRangeData_t which contains the
following specific results for each target detected.
• RangeMaxMilliMeter: is a 16 bit integer, indicating the larger detected distance.
• RangeMinMilliMeter: is a 16 bit integer, indicating the smaller detected distance.
• SignalRateRtnMegaCps: this value is the return signal rate in MegaCountPer Second (MCPS), this is a

16.16 fix point value. To obtain the real value it should be divided by 65536.
• AmbientRateRtnMegaCps: this value is the return ambient rate (in MCPS), this is a 16.16 fix point value,

which is effectively a measure of the amount of ambient light measured by the sensor. To obtain the real
value it should be divided by 65536.

• SigmaMilliMeter: this 16.16 fix point value is an estimation of the standard deviation of the current ranging,
expressed in millimeter. To obtain the real value it should be divided by 65536.

• RangeMilliMeter: is a 16 bit integer indicating the range distance in millimeter.
• RangeStatus: this is a 8 bit integer indicating the range Status for the current measurement. Value = 0

means ranging is valid. See Table 1. Range Status.
• ExtendedRange: this is a 8 bit integer indicating if the range has been unwrapped (only for long distances)

A particular behavior is implemented when the target is not detected. If the target is not detected, and the
measurement is valid, the following values are reported in the VL53LX_TargetRangeData_t structure:
• RangeMaxMilliMeter: forced to 8191.
• RangeMinMilliMeter: forced to 8191.
• SignalRateRtnMegaCps: forced to 0.
• AmbientRateRtnMegaCps: the ambient rate value is normally computed.
• SigmaMilliMeter: forced to 0.
• RangeMilliMeter: forced to 8191.
• RangeStatus: forced to 255.
• ExtendedRange: forced to 0.

UM2778
Ranging data structures

UM2778 - Rev 1 page 10/25

Table 1. Range Status

Value RangeStatus String Comment

0 VL53LX_RANGESTATUS_RANGE_VALID Ranging measurement is valid

1 VL53LX_RANGESTATUS_SIGMA_FAIL
Raised if sigma estimator check is above the internal

defined threshold. Sigma estimator gives a
qualitative information about the signal.

2 VL53LX_RANGESTATUS_SIGNAL_FAIL Raised when signal is too low to detect a target.

4 VL53LX_RANGESTATUS_OUTOFBOUNDS_FAIL Raised when range result is out of bounds

5 VL53LX_RANGESTATUS_HARDWARE_FAIL Raised in case of HW or VCSEL failure

6 VL53LX_RANGESTATUS_RANGE_VALID_NO_WR
AP_CHECK_FAIL

No wraparound check has been done (this is the
very first range)

7 VL53LX_RANGESTATUS_WRAP_TARGET_FAIL Wraparound occurred

8 VL53LX_RANGESTATUS_PROCESSING_FAIL Internal processing error

10 VL53LX_RANGESTATUS_SYNCRONISATION_INT Raised one time after init, ranging value has to be
ignored

11 VL53LX_RANGESTATUS_RANGE_VALID_MERGE
D_PULSE

Ranging is OK, but distance reported is the result of
multiple targets merged together.

12 VL53LX_RANGESTATUS_TARGET_PRESENT_LA
CK_OF_SIGNAL

Indicate that there is a target, but signal is too low to
report ranging

14 VL53LX_RANGESTATUS_RANGE_INVALID Ranging data is negative and has to be ignored

255 VL53LX_RANGESTATUS_NONE Target not detected, without no warning or errors
raised

Note: The very first measurement does not include a wraparound check. This ranging measurement can be discarded.

Note: Range status 1 is often caused by noisy measurements. Sigma estimator is strongly impacted by the SNR of the
treated signals.

Note: Range status 4 is raised when some error on the measurement reference occurs. This can cause outliers as
negative measurements or extremely high ranging values.

UM2778
Ranging data structures

UM2778 - Rev 1 page 11/25

5 Additional driver functions description

5.1 Timing budget

Timing budget is the time allocated by the user to perform one range measurement.
VL53LX_SetMeasurementTimingBudgetMicroSeconds() is the function to be used to set the timing budget.
The default timing budget value is 33 ms. Minimum is 8 ms, maximum is 500 ms.
For example, to set the timing budget to 66 ms:
status = VL53LX_SetMeasurementTimingBudgetMicroSeconds(&VL53L3Dev, 66000);
The function VL53LX_GetMeasurementTimingBudgetMicroSeconds() allows to get the programmed timing
budget.

5.2 Distance mode

A function has been added to optimize the internal settings depending on the ranging distance requested by user.
The benefit of changing the distance mode is detailed in the following table.

Table 2. Distance modes

Possible distance mode Benefit / comments

Short Better ambient immunity

Medium (Default) Maximum distance

Long Lower power consumption

The function to use is called VL53LX_SetDistanceMode().
The driver can help the host to select the optimum distance mode. A specific value is returned at each ranging to
indicate the best choice, depending on the ambient conditions.
Possible values are:
• VL53LX_DISTANCE_SHORT
• VL53LX_DISTANCE_MEDIUM
• VL53LX_DISTANCE_LONG

5.3 Tuning parameters

Tuning parameters allow to find the best fit between the sensor and the host use case. For each use case, a set
of tuning parameters can be defined and loaded in the driver.
Most of the tuning parameters are tunable thresholds, used in the signal treatment algorithm. Modifying these
parameters allows the algorithm to make technical trade offs to the specific customer use case.

5.3.1 Set a tuning parameter
An extra function exists to load tuning parameters. For specific use cases, ST can recommend some specific
parameters composed of a key and a value.
The list of tuning parameters and their default values is given in the vl53lx_tuning_parm_defaults.h file. Either
change a tuning parameter value in this file and recompile the code, or use the VL53LX_SetTuningParameter()
function to load this tuning parameter.
Changing a tuning parameter can modify the device performances. ST recommends to use the default values for
optimal results.

UM2778
Additional driver functions description

UM2778 - Rev 1 page 12/25

5.3.2 Improve accuracy
In order to improve the device accuracy, use the tuning parameter called
VL53LX_TUNINGPARM_PHASECAL_PATCH_POWER. By default this tuning parameter is not applied (value is
set to 0).
ST recommends to set the values of calibration and ranging flows to 2 after static_init.
In this case, the time to perform the reference signal measurement is increased and allows better accuracy.
Setting this parameter to 2 increases the duration to get the first measurement by 240 ms.

5.3.3 Improve latency and max ranging distance
When the target is moving, the VL53L3CX may need several ranges to react, depending on the scene.
A way to improve the latency is to tune the VL53LX_TUNINGPARM_RESET_MERGE_THRESHOLD parameter.
Default value is 15000. It can be lowered to improve latency, but maximum ranging distance will be impacted.
If the user increases the value, the maximum ranging distance can be improved, but latency is impacted.

5.4 Coverglass smudge detection

The crosstalk can be affected by smudge on the coverglass. VL53L3CX embeds a function able to detect smudge
on the fly and apply a new crosstalk correction value.
The user can enable/disable this function by calling VL53LX_SmudgeCorrectionEnable().
The following three options can be set with this function:
• VL53LX_SMUDGE_CORRECTION_NONE to disable the correction
• VL53LX_SMUDGE_CORRECTION_CONTINUOUS to enable a continuous correction
• VL53LX_SMUDGE_CORRECTION_SINGLE to enable a single correction after a start command is

received.

Smudge detection is running at each ranging. If some conditions are met (no object below 80 cm, ambient light
level below a threshold, and crosstalk value above 1kcps), a new crosstalk value is computed.
If the user has set the smudge correction, the crosstalk value will be corrected and the flag
HasXtalkValueChanged is set. This flag is automatically cleared at next range.

5.5 I2C address

The default I2C address of the VL53L3CX is 0x52.
Some applications need to set a different I2C device address. This is the case, for example, when several
VL53L3CX parts share the same I2C bus.
The customer should apply the following procedure:
• The board mounting the VL53L3CX have to be designed carefully. The Xshut and the GPIO1 (interrupt) pins

have to be controlled individually for each VL53L3CX
• The host has to put in HW Standby, setting the Xshut pin low, all the VL53L3CX.
• The host raises the Xshut pin of 1 of the VL53L3CX
• The host calls the function VL53LX_SetDeviceAddress()
• The host repeats the latter three points since all the VL53L3CX addresses are correctly set.

For example, by calling the function: status = VL53LX_SetDeviceAddress(&VL53L3Dev, WantedAddress)
the value of WantedAddress is set as the new I2C address.

UM2778
Coverglass smudge detection

UM2778 - Rev 1 page 13/25

6 Customer factory calibration functions

In order to get benefit of full performance of the device, VL53L3CX driver includes calibration functions to be run
once at customer production line.
Calibration procedures have to be run to compensate part to part parameters that may affect the device
performances.
Calibration data stored in the host have to be loaded in VL53L3CX at each startup using a dedicated driver
function.
Three calibrations are needed: refSPAD, crosstalk and offset.
The order the calibration functions are called as follows:
1. refSPAD
2. crosstalk
3. offset
The three calibration functions can be done in sequential mode or individually. When run individually, the previous
step data have to be loaded before running calibration.

6.1 RefSPAD calibration

The number of Single photon avalanche diode (SPAD) is calibrated during Final Module Test at ST. This part to
part value is stored into NVM and automatically loaded in the device during boot.
This calibration allow to adjust the number of SPADs to optimize the device dynamic.
However, adding a cover glass on top of the module may affect this calibration. We recommend that the customer
performs again this calibration in the final product application.
The same algorithm running at FMT is applied when this function is called: the algorithm searches through the 3
locations 1 (1x attenuated SPADs), 2 (5 x attenuated SPADs) and 3 (10 x attenuated SPADs). Number of SPADs
choosen is done to avoid signal saturation.

6.1.1 RefSPAD calibration function
The following function is available for SPAD calibration: VL53LX_PerformRefSpadManagement(VL53LX_DEV
Dev)

Note: This function must be called first in the calibration procedure.
The function can output 3 warnings messages :
• VL53LX_WARNING_REF_SPAD_CHAR_NOT_ENOUGH_SPADS

Less than 5 Good SPAD available, output not valid
• VL53LX_WARNING_REF_SPAD_CHAR_RATE_TOO_HIGH

At end of search reference rate > 40.0 Mcps Offset stability may be degraded.
• VL53LX_WARNING_REF_SPAD_CHAR_RATE_TOO_LOW

At end of search reference rate < 10.0 Mcps. Offset stability may be degraded.

6.1.2 RefSPAD calibration procedure
No particular conditions have to be followed for this calibration, except that no target should be placed just on top
of the device.
Time to perform this calibration is only few milliseconds.
This function has to be called after VL53LX_DataInit() function is called.

UM2778
Customer factory calibration functions

UM2778 - Rev 1 page 14/25

6.1.3 Getting refSPAD calibration results
The function VL53LX_GetCalibrationData() allows to get all calibration data. The returned structure
VL53LX_CalibrationData_t contains another structure called VL53LX_customer_nvm_managed_t which contains
the 8 refSPAD calibration parameters:
• ref_spad_man__num_requested_ref_spads: this value is between 5 and 44. It gives the number of SPADs

selected
• ref_spad_man__ref_location: this value can be 1, 2 or 3. It gives the location of the SPADs in the reference

area.
• 6 additional parameters gives the good spad maps for the location selected:

– global_config__spad_enables_ref_0
– global_config__spad_enables_ref_1
– global_config__spad_enables_ref_2
– global_config__spad_enables_ref_3
– global_config__spad_enables_ref_4
– global_config__spad_enables_ref_5

6.1.4 Setting refSPAD calibration data
At each startup, after an initial boot, customer field application can load the refSPAD calibration data after
VL53LX_DataInit() function is called, by using VL53LX_SetCalibrationData().
It is better to get the entire calibration structure by calling VL53LX_GetCalibrationData(), modify the 8 parameters
described in previous section and call VL53LX_SetCalibrationData().

6.2 Crosstalk calibration

Crosstalk (XTalk) is defined as the amount of signal received on the return array which is due to VCSEL light
reflection inside the protective window (coverglass) added on top of the module for aesthetic reasons.
Depending on the coverglass quality, this parasitic signal can affect the device performances. VL53L3CX has a
built in correction that allows to compensate this problem.
Crosstalk calibration is used to estimate the amount of correction needed to compensate the effect of a cover
glass added on top of the module.
The output of the crosstalk calibration contains many parameters that define the crosstalk model, as described in
Section 6.2.3 Getting crosstalk calibration results.

6.2.1 Crosstalk calibration function
The following dedicated function is available for crosstalk calibration:
VL53LX_PerformXTalkCalibration(&VL53L3Dev);

Note: This function must be called in second position in the calibration procedure, after refSPAD calibration is done,
and before offset calibration.

6.2.2 Crosstalk calibration procedure
To perform the crosstalk calibration, a target has to be placed at a distance of 600mm from the device.
Crosstalk calibration should be conducted in a dark environment with no IR contribution.
After VL53LX_DataInit() and VL53LX_PerformRefSpadManagement() functions are called, the dedicated
calibration function has to be called, using: VL53LX_PerformXTalkCalibration(&VL53L3Dev).
When these functions are called, crosstalk calibration is performed and the crosstalk correction is applied by
default.

UM2778
Crosstalk calibration

UM2778 - Rev 1 page 15/25

6.2.3 Getting crosstalk calibration results
Calibration results consist, among others, of an histogram and a parameter called “plane offset”. The plane offset
represents the amount of correction applied, and the histogram is the repartition of the correction on each bin.
The function VL53LX_GetCalibrationData() returns all the calibration data. The returned structure
VL53LX_CalibrationData_t contains other structures. The plane offset is contained in
VL53LX_customer_nvm_managed_t:
algo_crosstalk_compensation_plane_offset_kcps is a fixed point 7.9 coded value. It has to be divided by 512 to
get the actual number.
The other relevant structure returned is VL53LX_xtalk_histogram_data_t.

6.2.4 Setting crosstalk calibration data
Once the VL53LX_DataInit() function is called, the customer can load the crosstalk calibration data using:
VL53LX_SetCalibrationData()
It is better to call VL53LX_GetCalibrationData(), modify the parameters described in previous section,
xtalk_histogram structure included, and call VL53LX_SetCalibrationData()

6.2.5 Enable/disable crosstalk compensation
The function VL53LX_SetXTalkCompensationEnable() enables or disables the crosstalk compensation

Note: Crosstalk compensation is disabled by default.
To enable the crosstalk compensation call V53LX_SetXTalkCompensationEnable&VL53L3Dev, 1);
To disable the crosstalk compensation call VL53LX_SetXTalkCompensationEnable&VL53L3Dev, 0);

Note: This function does not perform any calibration or crosstalk data loading, it only enables the compensation.

Note: Calibration or loading of calibration data functions have to be called separately from this enable/disable function
(see sections above).

6.3 Offset calibration

Soldering the device on the customer board or adding a coverglass can introduce an offset in the ranging
distance. This part to part offset has to be measured during the offset calibration.
Offset calibration also allows to calibrate the dmax value, using the same calibration conditions than the offset
calibration.

6.3.1 Offset calibration functions
The following two functions are available for the offset calibration:
• VL53LX_PerformOffsetSimpleCalibration(Dev, CalDistanceMilliMeter)
• VL53LX_PerformOffsetPerVCSELCalibration(Dev, CalDistanceMilliMeter)

The arguments of the functions is the target distance in millimeters. Offset calibration has to be performed after
crosstalk correction.
VL53LX_PerformOffsetPerVCSELCalibration is the most accurate function, but it takes longer to perform the
calibration (time multiplied by 3)

UM2778
Offset calibration

UM2778 - Rev 1 page 16/25

6.3.2 Offset calibration procedure
Customers can select any chart reflectance placed at any distance (using the same setup as the crosstalk
calibration). The only point to check is to ensure the signal rate is measured between 2 and 80MCps with the
chosen setup.

Table 3. Offset calibration setup

Chart Distance Ambient conditions Signal Rate

Any Any Dark (no IR contribution) 2MCps < Signal Rate <80Mcps

Two warning messages are returned by these functions:
• VL53LX_WARNING_OFFSET_CAL_INSUFFICIENT_MM1_SPADS

The signal is too low, Accuracy of offset calibration may be degraded.
• VL53LX_WARNING_OFFSET_CAL_PRE_RANGE_RATE_TOO_HIGH

Signal is too high. Accuracy of offset calibration may be degraded.

6.3.3 Getting offset calibration results
The function VL53LX_GetCalibrationData() returns all calibration data. The returned structure
VL53LX_CalibrationData_t contains another structure called VL53LX_customer_nvm_managed_t which contains
the three offset calibration results:
• algo__part_to_part_range_offset_mm
• mm_config__inner_offset_mm
• mm_config__outer_offset_mm

The overall offset applied to the device is the average of the two last values
If a perVCSELCalibration is selected, the output of the function is includes the following data:
• short_a_offset_mm
• short_b_offset_mm
• medium_a_offset_mm
• medium_b_offset_mm
• long_a_offset_mm
• long_bb_offset_mm

Depending of the distance mode (VCSEL period) chosen, one of these offset will be applied automatically.

6.3.4 Selecting the offset correction mode
The offset correction mode can be set with two options, using the VL53LX_SetOffsetCorrectionMode function.

Note: VL53LX_OFFSETCORRECTIONMODE_PERVCSEL should be used by default. It allows to increase the offset
accuracy per VCSEL period.

Table 4. Offset correction options

Offset Calibration function called Correction mode option to be used

PerformSimpleOffsetCalibration VL53LX_OFFSETCORRECTIONMODE_STANDARD

PerfromPerVCSELOffsetCalibration VL53LX_OFFSETCORRECTIONMODE_PERVCSEL

Note: If only one offset calibration type results are available, it is mandatory to set the offset correction mode to the
corresponding option. This is not done automatically.

UM2778
Offset calibration

UM2778 - Rev 1 page 17/25

6.3.5 Setting offset calibration data
The customer can load the offset calibration data after VL53LX_DataInit() function is called, by using
VL53LX_SetCalibrationData().
It is better to call VL53LX_GetCalibrationData(), modify the parameters described in previous sections and call
VL53LX_SetCalibrationData()

UM2778
Offset calibration

UM2778 - Rev 1 page 18/25

7 Customer repair shop calibrations

In case the calibration values are lost, due to component change in a repair shop, customer can apply a
dedicated procedure, where no specific setup (targets) are needed.
The calibration is composed of three steps:
1. RefSpad
2. Crosstalk
3. Offset calibrations
RefSpad and Xtalk are the same as described in Section 6.1 RefSPAD calibration and Section 6.2 Crosstalk
calibration.
A dedicated function is available to perform offset calibration: VL53LX_PerformOffsetZeroDistanceCalibration.
A target has to be set in front of the device, touching the cover glass. The target can be a simple sheet of paper
(with no particular need for the paper reflectance).
The above function has to be called and the results can be retrieved similarly to the process described in the
previous sections.

UM2778
Customer repair shop calibrations

UM2778 - Rev 1 page 19/25

8 Bare driver errors and warnings

Driver error is reported when any driver function is called. Possible values for driver errors are described in the
following table.
Warning are there to inform user that some parameters are not optimized.
The warnings are not blocking for the host.

Table 5. Bare driver errors and warnings description

Error value API error string Occurrence

0 VL53LX_ERROR_NONE No error

-1 VL53LX_ERROR_CALIBRATION_WARNING Invalid calibration data

-4 VL53LX_ERROR_INVALID_PARAMS Invalid parameter is set in a function

-5 VL53LX_ERROR_NOT_SUPPORTED Requested parameter is not supported in the
programmed configuration

-6 VL53LX_ERROR_RANGE_ERROR Interrupt status is incorrect

-7 VL53LX_ERROR_TIME_OUT Ranging is aborted due to timeout

-8 VL53LX_ERROR_MODE_NOT_SUPPORTED Requested mode is not supported

-10 VL53LX_ERROR_COMMS_BUFFER_TOO_SMALL Supplied buffer is larger than I2C supports

-13 VL53LX_ERROR_CONTROL_INTERFACE Error reported from IO function

-14 VL53LX_ERROR_INVALID_COMMAND Command is invalid

-16 VL53LX_ERROR_REF_SPAD_INIT An error occurred during Reference SPAD
calibration

-17 VL53LX_ERROR_GPH_SYNC_CHECK_FAIL

Driver out of sync with device. A stop/start or a
reboot may be needed

-18 VL53LX_ERROR_STREAM_COUNT_CHECK_FAIL

-19 VL53LX_ERROR_GPH_ID_CHECK_FAIL

-20 VL53LX_ERROR_ZONE_STREAM_COUNT_CHEC
K_FAIL

-21 VL53LX_ERROR_ZONE_GPH_ID_CHECK_FAIL

-22 VL53LX_ERROR_XTALK_EXTRACTION_FAIL

No successful samples when using the full array to
sample the crosstalk. In this case there is not

enough information to generate new crosstalk value.
The function will exit and leave the current crosstalk

parameters unaltered

-23 VL53LX_ERROR_XTALK_EXTRACTION_SIGMA_L
IMIT_FAIL

The avg sigma estimate of the crosstalk sample is >
than the maximal limit allowed. In this case the

crosstalk sample is too noisy for measurement. The
function will exit and leave the current crosstalk

parameters unaltered

-24 VL53LX_ERROR_OFFSET_CAL_NO_SAMPLE_FA
IL An error occurred during offset calibration. Check

setup is in line with ST recommendations.
-25 VL53LX_ERROR_OFFSET_CAL_NO_SPADS_ENA

BLED_FAIL

-28 VL53LX_WARNING_REF_SPAD_CHAR_NOT_EN
OUGH_SPADS

Warning: number of spads found is too low to get
accurate refSpadManagement calibration. Ensure

setup is in line with ST recommendations.

-29 VL53LX_WARNING_REF_SPAD_CHAR_RATE_TO
O_HIGH

Warning: signal rate found too low to get accurate
refSpadManagement calibration. Ensure setup is in

line with ST recommendations.

UM2778
Bare driver errors and warnings

UM2778 - Rev 1 page 20/25

Error value API error string Occurrence

-30 VL53LX_WARNING_REF_SPAD_CHAR_RATE_TO
O_LOW

Warning: Number of spads found too low to get
accurate offset calibration. Ensure setup is in line

with ST recommendations.

-31 VL53LX_WARNING_OFFSET_CAL_MISSING_SA
MPLES

Warning occurred during offset calibration. Ensure
setup is in line with ST recommendations.

-32 VL53LX_WARNING_OFFSET_CAL_SIGMA_TOO_
HIGH

-33 VL53LX_WARNING_OFFSET_CAL_RATE_TOO_HI
GH

-34 VL53LX_WARNING_OFFSET_CAL_SPAD_COUNT
_TOO_LOW

-38 VL53LX_WARNING_XTALK_MISSING_SAMPLES Warning occurred during crosstalk calibration.
Ensure setup is in line with ST recommendations.

-41 VL53LX_ERROR_NOT_IMPLEMENTED Function called is not implemented

UM2778
Bare driver errors and warnings

UM2778 - Rev 1 page 21/25

Revision history

Table 6. Document revision history

Date Version Changes

28-Sep-2020 1 Initial release

UM2778

UM2778 - Rev 1 page 22/25

Contents

1 VL53L3CX system overview .2

2 Ranging functional description .3

2.1 Ranging sequence . 3

2.2 Timing considerations. 5

3 Bare driver basic functions description .6

3.1 Bare driver . 6

3.2 System initialization . 8

3.2.1 Wait for boot . 8

3.2.2 Data init. 8

4 Ranging with VL53L3CX .9

4.1 Start a measurement . 9

4.2 Wait for a result: polling or interrupt . 9

4.2.1 Driver polling to get the result status . 9

4.2.2 Host polling to get the result status . 9

4.2.3 Using physical interrupt. 9

4.3 Get measurement . 9

4.4 Stop a measurement . 9

4.5 Ranging data structures . 10

5 Additional driver functions description. .12

5.1 Timing budget . 12

5.2 Distance mode. 12

5.3 Tuning parameters . 12

5.3.1 Set a tuning parameter . 12

5.3.2 Improve accuracy . 13

5.3.3 Improve latency and max ranging distance . 13

5.4 Coverglass smudge detection . 13

5.5 I2C address . 13

6 Customer factory calibration functions. .14

6.1 RefSPAD calibration . 14

UM2778
Contents

UM2778 - Rev 1 page 23/25

6.1.1 RefSPAD calibration function . 14

6.1.2 RefSPAD calibration procedure. 14

6.1.3 Getting refSPAD calibration results . 15

6.1.4 Setting refSPAD calibration data . 15

6.2 Crosstalk calibration . 15

6.2.1 Crosstalk calibration function . 15

6.2.2 Crosstalk calibration procedure. 15

6.2.3 Getting crosstalk calibration results. 16

6.2.4 Setting crosstalk calibration data. 16

6.2.5 Enable/disable crosstalk compensation. 16

6.3 Offset calibration . 16

6.3.1 Offset calibration functions . 16

6.3.2 Offset calibration procedure . 17

6.3.3 Getting offset calibration results . 17

6.3.4 Selecting the offset correction mode . 17

6.3.5 Setting offset calibration data . 18

7 Customer repair shop calibrations .19

8 Bare driver errors and warnings .20

Revision history .22

Contents .23

UM2778
Contents

UM2778 - Rev 1 page 24/25

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics – All rights reserved

UM2778

UM2778 - Rev 1 page 25/25

http://www.st.com/trademarks

	Introduction
	1 VL53L3CX system overview
	2 Ranging functional description
	2.1 Ranging sequence
	2.2 Timing considerations

	3 Bare driver basic functions description
	3.1 Bare driver
	3.2 System initialization
	3.2.1 Wait for boot
	3.2.2 Data init

	4 Ranging with VL53L3CX
	4.1 Start a measurement
	4.2 Wait for a result: polling or interrupt
	4.2.1 Driver polling to get the result status
	4.2.2 Host polling to get the result status
	4.2.3 Using physical interrupt

	4.3 Get measurement
	4.4 Stop a measurement
	4.5 Ranging data structures

	5 Additional driver functions description
	5.1 Timing budget
	5.2 Distance mode
	5.3 Tuning parameters
	5.3.1 Set a tuning parameter
	5.3.2 Improve accuracy
	5.3.3 Improve latency and max ranging distance

	5.4 Coverglass smudge detection
	5.5 I2C address

	6 Customer factory calibration functions
	6.1 RefSPAD calibration
	6.1.1 RefSPAD calibration function
	6.1.2 RefSPAD calibration procedure
	6.1.3 Getting refSPAD calibration results
	6.1.4 Setting refSPAD calibration data

	6.2 Crosstalk calibration
	6.2.1 Crosstalk calibration function
	6.2.2 Crosstalk calibration procedure
	6.2.3 Getting crosstalk calibration results
	6.2.4 Setting crosstalk calibration data
	6.2.5 Enable/disable crosstalk compensation

	6.3 Offset calibration
	6.3.1 Offset calibration functions
	6.3.2 Offset calibration procedure
	6.3.3 Getting offset calibration results
	6.3.4 Selecting the offset correction mode
	6.3.5 Setting offset calibration data

	7 Customer repair shop calibrations
	8 Bare driver errors and warnings
	Revision history
	Contents

