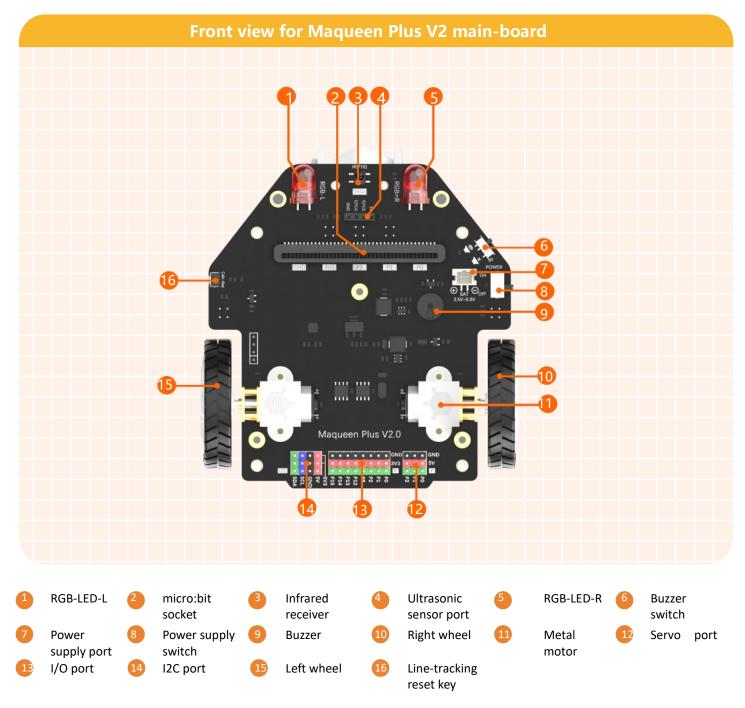


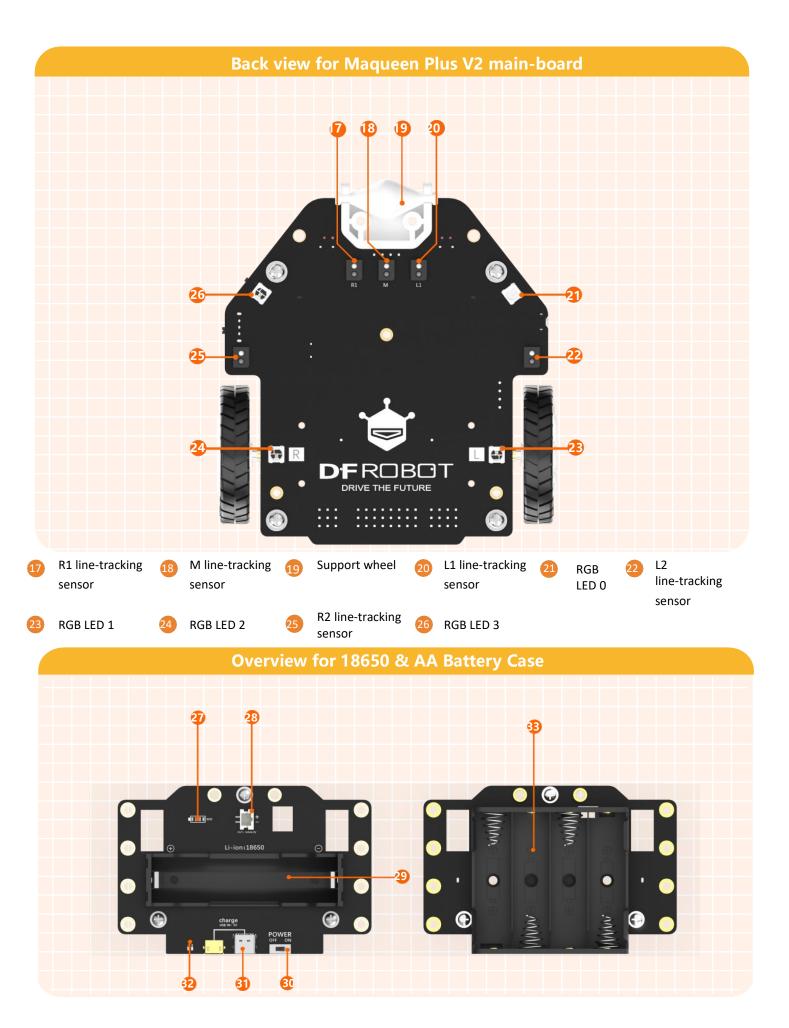

Maqueen Plus V2 Getting Started Tutorial

content

Introduction to Maqueen Plus V2	1
Let's move, Maqueen!	11
Walking Emoji	17
City Defender - A Police Car	22
Light Sensing Robot	27
Moth Robot	31
Little Ranging Expert	36
Auto-braking Robot	41
Line-tracking Robot	47
Tour of Crossroad	54
IR-controlled Robot	60
Motion Sensing Robot	66
Firefighting Robot	73
Appendix 1. Maqueen Plus V2 Block Description & Program Links	80

Chapter 1

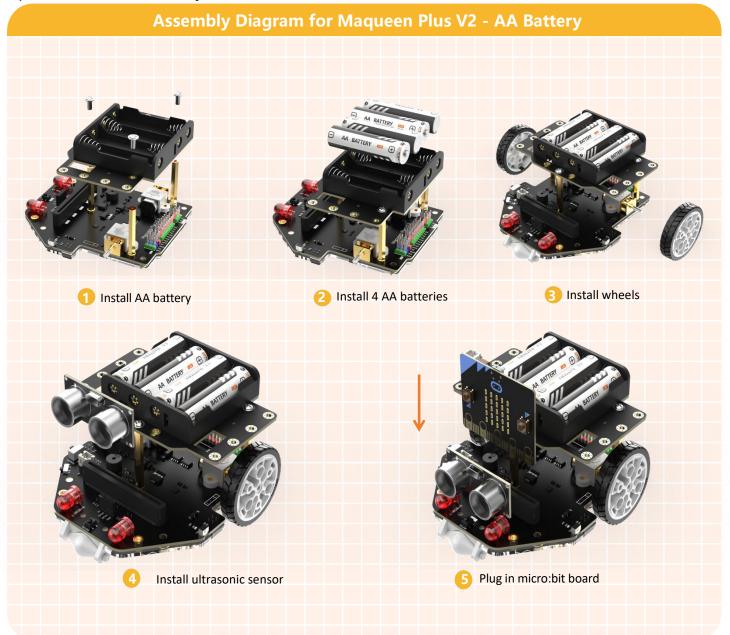

Introduction to Maqueen Plus V2


Introduction

What is Maqueen Plus V2?

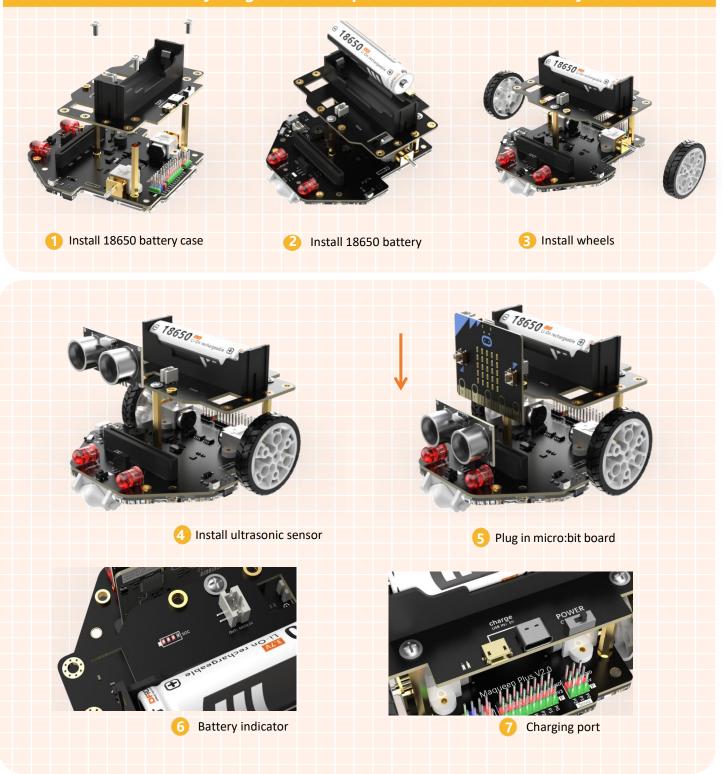
Maqueen Plus V2 is the upgraded version of the STEAM Maqueen Plus educational robot, offering a variety of enhanced features to strengthen its capabilities, more flexible and easy to use. It supports graphical coding platforms like MakeCode and Mind+, on which we can program it to make various interesting projects by simply dragging and snapping blocks. Follow Maqueen Plus V2 to explore the world of robotics, while learning coding in a fun way!

Before we get started, let's see what Maqueen Plus V2 has got there first.



Maqueen Plus V2 has been equipped with so many functions, and now we can't wait to try them. OK, here

we go!


Assembly

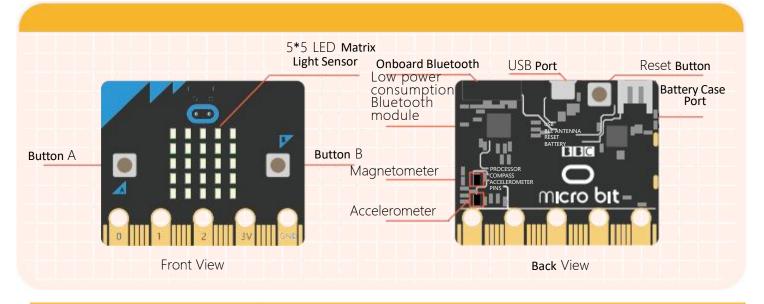
Maqueen Plus V2 - AA Battery

Maqueen Plus V2 -18650 Battery

Assembly Diagram for Maqueen Plus V2 -18650 Battery

Note: when the 18650 battery is fully charged, all LEDs will be on. The LEDs will be off one by one as the power gradually decreases. If all lights go out, the battery needs to be recharged.

After we assembled Maqueen Plus V2, put it aside because first, we need to get familiar with its most important controller device – micro:bit. Just like the CPU in a computer, micro:bit is Maqueen Plus V2's "brain" for storing and processing data, which also is the key to making Maqueen Plus V2 "alive". (Maqueen Plus V2 - AA battery version is used in this tutorial.)


Introduction to micro:bit

What can micro:bit do?

The micro:bit can be programmed to do various interesting things. For example, it can interconnect with automobiles via onboard Bluetooth, thus the automobile can send commands to control the MCU. Multiple micro:bit boards can communicate with each other via radio to complete the tasks requiring remote control. Also, it can be a navigation device as it features an on-board compass to track the direction of the wearer. And there are 5×5 LED matrix on the board that can display funny patterns and animation, and two programmable buttons that can be used to control game-play or pause/play a track.

In addition, micro:bit is equipped with commonly-used sensors like light sensor and temperature sensor. So it can be widely used in light-related projects and applications requiring temperature detection, and so on. **micro:bit Function**

On the credit card size board (5cm*4cm/1.97*1.57") there are 5×5 programmable LED matrix, two programmable buttons, light sensor, accelerometer, compass, temperature sensor, Bluetooth module and other electric modules.

5×5 Programmable LED Matrix	There are 25 programmable LED lights on micro:bit which can display patterns, words, and numbers.
2 Programmable Buttons	Used separately or together to make things happen. For example, press down A to display a heart pattern.
Light Sensor	The 25 LEDs can act as light sensors to measure how much light is falling on the micro:bit.
Accelerometer and Compass	Measure the gestures or forces in 3 dimensions, such as shaking, tilting, free fall.
Temperature Sensor	Detect the temperature in the current environment.
Bluetooth & Radio	Your micro:bit can communicate with other micro:bits by radio, and with other devices using Bluetooth.

micro:bit Programming

We can directly program micro:bit online without installing any software. There is a huge community of people making tools for programming and interacting with the micro:bit which means you can program

6

your micro:bit in Python, C++ and other languages, including all kinds of block editors: MakeCode, Blocks, Scratch, Mind+, etc.In this tutorial, we will use MakeCode to program, click the link https://makecode.microbit.org/ to enter MakeCodeonline programming environment.

MakeCode Online Programming

MakeCode Introduction

Microsoft MakeCode is a framework for creating interactive and engaging programming experiences for those new to the world of programming. The primary goal of MakeCode is to introduce programming in a way that is approachable and inviting. MakeCode uses the blocks programming model to let the users learn coding concepts in a more tangible fashion.

Once the user becomes comfortable with the coding elements and structure like the simulator, block editor and text editor in MakeCode, they can progress to create more complex programs.

Build Up Programming Environment

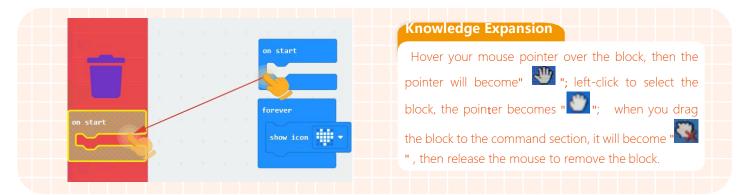
1. Input <u>https://makecode.microbit.org/</u> in your browser to enter the MakeCode programming environment. Note: it should be operated on a computer with a good Internet connection. If it cannot be loaded properly, please try it again using the Google browser

Hicrosoft Omicro:bit	۵	
Introduction to the BBC microbit Show Instructions		
My Projects View All	1. Import	
New Project	>	
Tutorials		
Hour? Start Here Flashing Heart	Name Tag Smiley Buttons Dice Love Meter Micro Chat	

2. Open MakeCode editor and create a new project to enter MakeCode programming interface.

	😑 Interface Switch	_	Home & Share	_	o Se
Microsoft Comicro:bit		😢 Blocks 📰 JavaScript 🗸		* *	o 😒
	Basic Input Music Led Led Variables Variables Math C Extensions Advanced		Editing Section		
Simulator	Command Blocks	аларана			
Download Section	Pick a name	5 0 - <u></u>			• •

Name	Function
Home & Share	Home: create a new project, open tutorial, game, music, fashion, etc. Share: publish your project to share it or embed it in other web pages.
Interface Switch	Blocks: graphical programming, suitable for primary and middle school students. JavaScript: code in JavaScript, suitable for high school, college students, and above.
Setting	Setting: project setting, extensions, delete project, language, reset, MakeCode version number, etc.
Simulator	Simulator: test the result of your program before downloading it into micro:bit. Preview Control: start, stop and restart the simulator, slow motion, mute audio, full-screen, etc.
Command Blocks	Blocks: 17 categories of programming blocks and more extended blocks.
Editing Section	Programming Editor: construct your program by dragging and snapping colorful blocks
Download Section	Download: download the program you edited into micro:bit.
Save/Name	Name: name your project. Save: save your project. Note: when you click "save", the program will be downloaded at the same time.

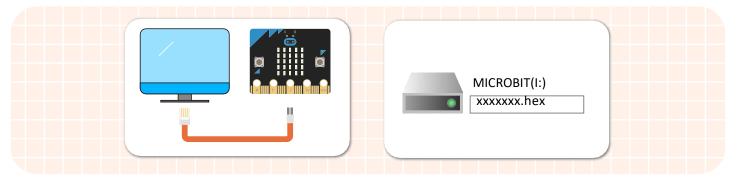

After we got a general understanding of MakeCode, let's step on our journey to code! In the first example, we will learn how to write and download a program.

1. Write a program

Step 1: drag the block we need to the editing section.

h i a		
	Basic	
Pasic	show number 0	A A A A A A A A A A A A A A A A A A A
O Inp.		a second s
Music	show leds	on start
C Led		
Radio		forever
C Loops		nhow icon 🛄 🚽
🔀 Logic		
Variables	show icon	
Hath	show string "Hello!"	

Step 2: to remove a block, drag it from the editing section to the command section, or right-click to delete.

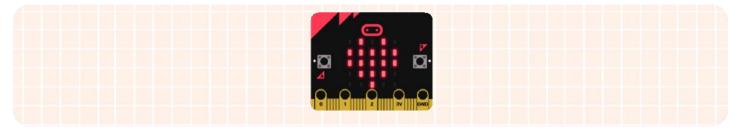


Step 3: after we completed a program, check its effect via the simulator.

2. Prepare to download

Connect the micro:bit board to your computer by a USB cable. There will be a hard disk named micro:bit appearing in your computer when the connection is successful.

3. Download


Click "Download" to download the program into your micro:bit.

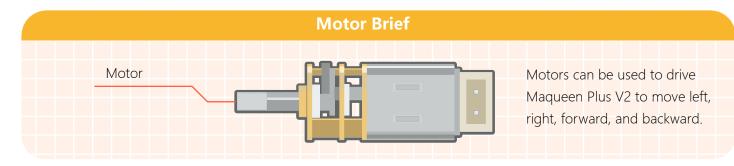
Note: when downloading a program, the micro:bit power indicator will keep flashing, and please do not disconnect the USB cable.

4. Download completes

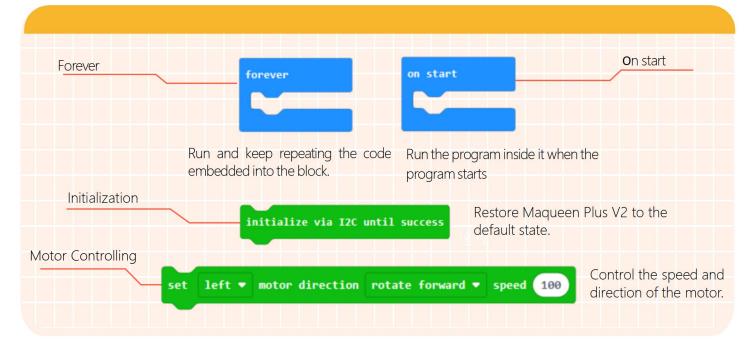
Once the downloading is completed, the micro:bit LED screen will show a heart pattern.

Since we have learned the basics about Maqueen Plus V2, micro:bit and MakeCode programming, so for the next chapter, we are going to write a program to let micro:bit drive Maqueen Plus V2.

Chapter 2

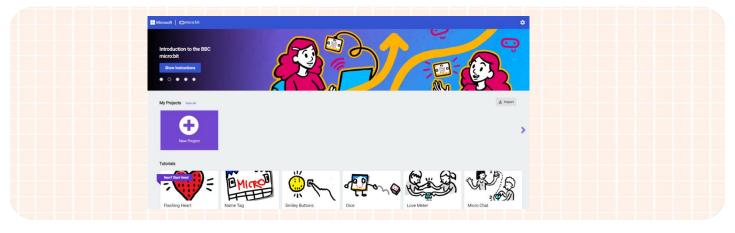

Let's move, Maqueen!

Here is our Maqueen Plus V2, look at this cool guy! You must be wanna play with him right now. OK, let's get started.


Goal

Learn how to drive a motor.

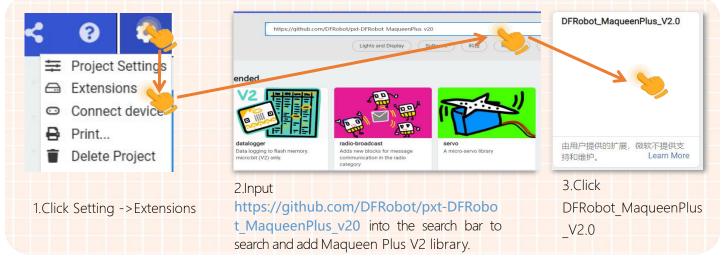
Electronic Component


Command Learning

Hands-on Practice

Step 1 Create a new project

1. Input https://makecode.microbit.org/ into your browser to enter the MakeCode editor.

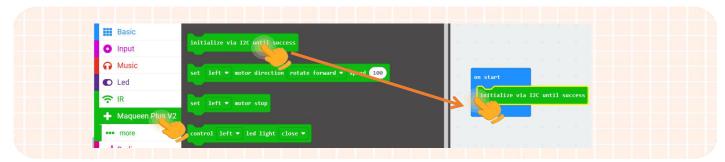


2. Click "new project" to enter the MakeCode programming interface.

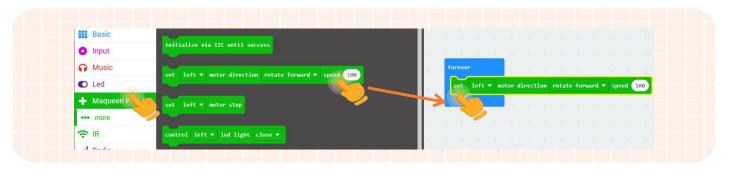
	Interface Switch	_	Home & Share	Setting
Microsoft Omicro:bit		😫 Blocks 🔚 JavaScript 🗸	*	< 0 🗢
	Average of the second s		 Editing Section 	
Simulator	Command Bloc	ks		
🖺 Download	Pick a name	1-0-20	·	n a e e
Download Section	Save/Name			

Step 2 Add the Maqueen Plus V2 library

1. To program Maqueen Plus V2, we have to find the related blocks in MakeCode Extensions. Maqueen Plus V2 Library: https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20



2. When the Maqueen Plus V2 library is loaded successfully, there will be an icon "+ Maqueen Plus V2" appearing in the command block section. Click the icon then you will see all the related blocks. Refer to appendix 1 to check the detailed description of these blocks.


Search Q - Maqueen Plus V2	
Basic	
Input Input	
Music set left ▼ motor direction rotate forward ▼ speed 100	
C Led	
R set left ▼ motor stop	
➡ Maqueen Plus V2 control left led light close	
••• more	
Radio read line sensor L1 - state	

Step 3 Programming

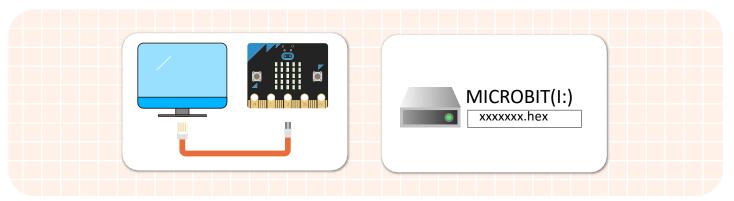
1. Embed the "initialize Maqueen Plus V2" block into the "on start" block.

2. Embed the motor control block into the "forever" block.

3. Change the "left" to "all" in the motor control block to let Maqueen Plus V2's two wheels move at the speed of 100.

forever			Most blocks can be used repeatedly, and the block
set left	or direction ro	otate forward 💌 speed	
	<u></u>		
🗸 left			from. Besides, you can change the number in the
right			" 2000 " by typing or dragging the slider.

4. The complete program is shown below.


on start		forever	r			
initialize via I	2C until success	set	all 🔻	motor directi	on rotate forward	• speed 10

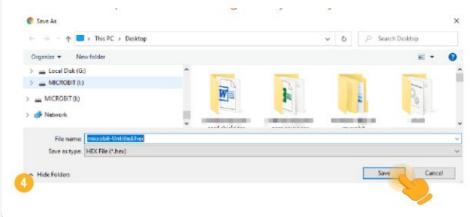
5. Save and name the project as "Let's move, Maqueen".

Step 4 Download a Program

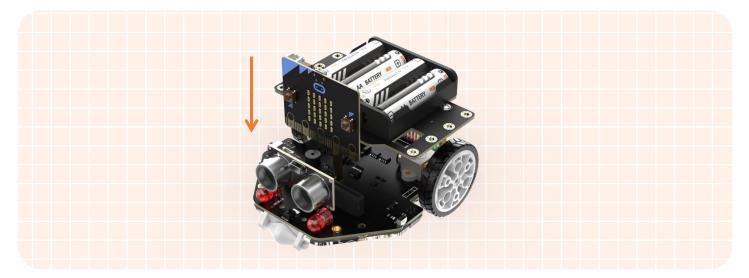
 Connect to a computer: Connect the micro:bit to your computer with a USB cable before downloading. There will be a hard disk named "micro:bit" appearing in the computer when the connection is successful.

2. Download the program: Click to download your project into the micro:bit hard disk.

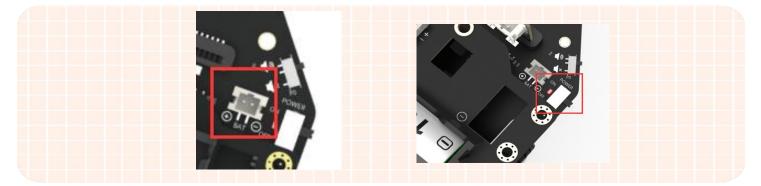
📥 Download	File name: xxxxxx.hex


Knowledge Expansion

Note: there will be no box popping out in the Google browser since your files are directly downloaded into the default download folder. You have to change it in the settings of Google browser.


Step1: enter the setting interface in the Google browser, scroll down to find the download setting part, and enable "Ask where to save each file before downloading".

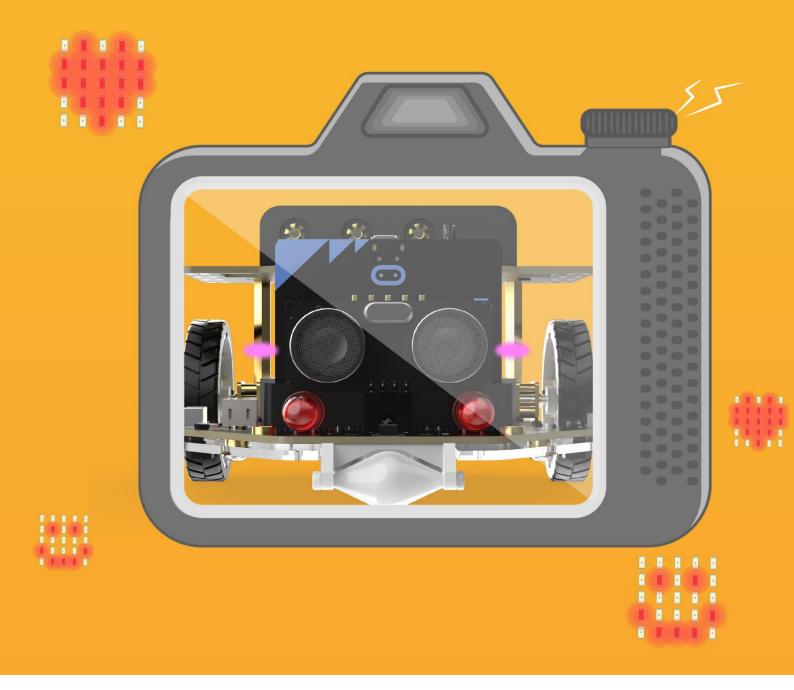
After completing the setting, every time when you click "download" the following box pops out.



When you write data, the power indicator on the back of micro:bit board keeps flashing. Please do not disconnect the USB during downloading. 3. Install the micro:bit board: After downloading the program, unplug the USB cable and plug the micro:bit board into Maqueen Plus V2.

Step 5 Effect Display

When you completed all the above steps, connect the power cable of the AA battery panel to the BAT of Maqueen Plus V2 and turn on the power switch, then Maqueen Plus V2 starts running!

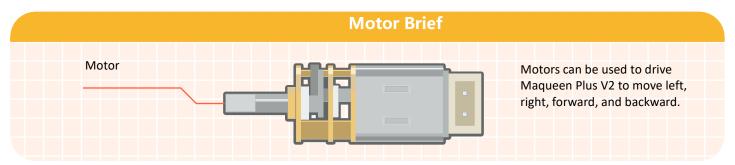


Think & Explore

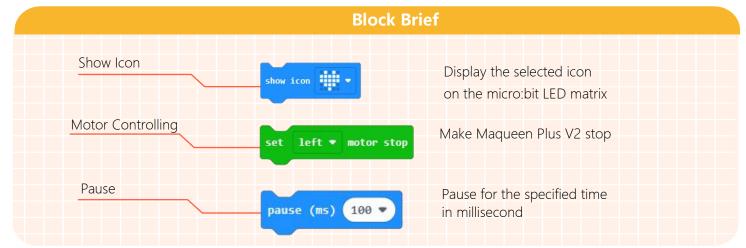
We have learned the program to make Maqueen Plus V2 move forward, but in our daily life, a car is also able to move backward, do you know how to realize that on Maqueen Plus V2? Can you program Maqueen Plus V2 to let it go backward at the speed of 100? Give it a try!

Tip: Just do a little change to the motor control block!

Chapter 3

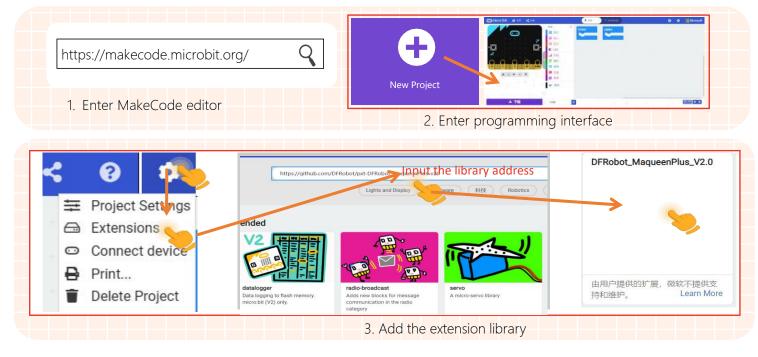

Walking Emoji

Emojis are now considered to be a large part of popular culture these days. Maqueen Plus V2 also has his emojis. In this chapter, let's control Maqueen Plus V2 to walk along a circle while displaying emojis on its LED screen.


Goal

- 1. Learn the differential steering principle
- 2. Get to know the function of the "pause" block

Electronic Component

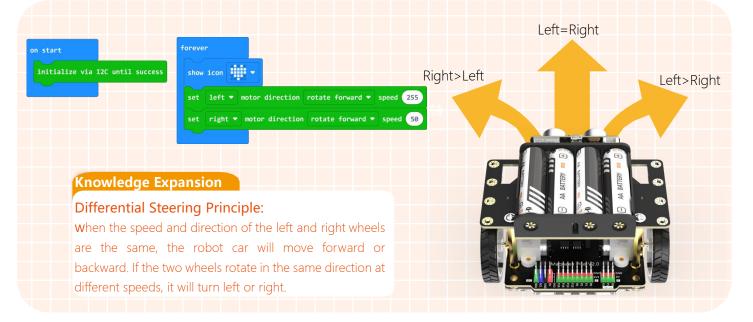

Command Learning

Hands-on Practice

Step 1 Create a New Project

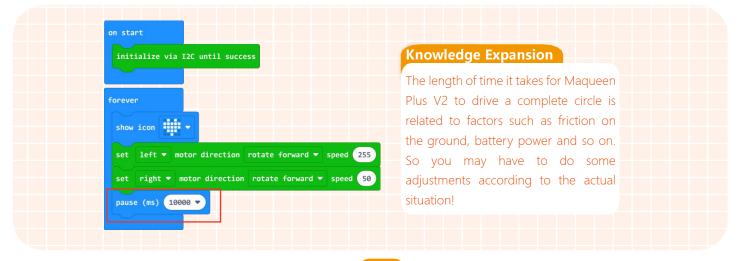
- 1. Input https://makecode.microbit.org/ into your browser to enter the MakeCode editor.
- 2. Click "new project" to enter the MakeCode programming interface.
- 3. Add the Maqueen Plus V2 library: https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20

Step 2 Programming


1. Display emojis

Drag the "show icon" block into a "forever" block, then a heart pattern will be displayed on the micro:bit LED matrix.

Basic More Input Music	show icon
	Note: click the drop-down arrow to select other patterns.


2. Maqueen Plus V2 moves clockwise

Program Maqueen Plus V2 to make it move clockwise along a circle. According to the differential steering principle, make the left motor move forward at the speed of 255, and the right motor move forward at 50.

3. Maqueen Plus V2 moves along a circle

Let Maqueen Plus V2 move along a circle. Set the pause time via the pause module to make it move along a perfect circle.

When Maqueen Plus V2 has walked a complete circle, display a smiley face on micro:bit LED matrix.

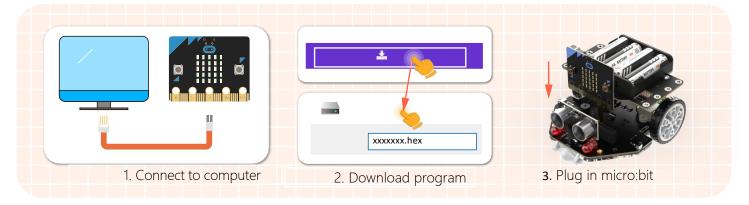
	on start initialize via I2C until success
	forever
	set left ▼ motor direction rotate forward ▼ speed 255 set right ▼ motor direction rotate forward ▼ speed 50
[pause (ms) 10000 show icon

4. Maqueen Plus V2 stops

Maqueen Plus V2 will move along a circle repeatedly. Now we can use another motor control block to make it stop. As shown below, change the "left" to "all", then both motors will stop rotating.

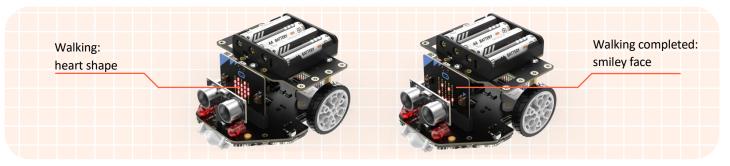
on start	forever
initialize via I2C until succe	ess show icon
	set left ▼ motor direction rotate forward ▼ speed 255
	set right ▼ motor direction rotate forward ▼ speed 50
	pause (ms) 10000 -
	show icon
	set all ▼ motor stop

5. Complete program


on start initialize via I2C until success	forever show icon
	set left - motor direction rotate forward - speed 255
	set right ▼ motor direction rotate forward ▼ speed 50
	pause (ms) 10000 - show icon
	set all v motor stop

6. Name your project as "Walking Emoji" and save it.

Walking Empii	
Walking Emoji	


Step 3 Download Program

- 1. Connect to a computer: Connect the micro:bit to your computer with a USB cable before downloading.There will be a hard disk named "micro:bit" appearing in the computer when the connection is successful.
- 2. Download the program: Click "Download" to download your project into the micro:bit hard disk.
- 3. Plug in the micro:bit board: After downloading the program, unplug the USB cable and plug the micro:bit board into Maqueen Plus V2.

Step 4 Effect Display

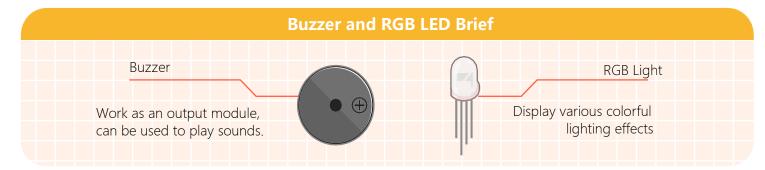
Turn on the power switch, then Maqueen Plus V2 will start to run along a circle while showing a heart pattern on the micro:bit LED matrix. When he stops, a smiley pattern will be displayed on the screen.

Think & Explore

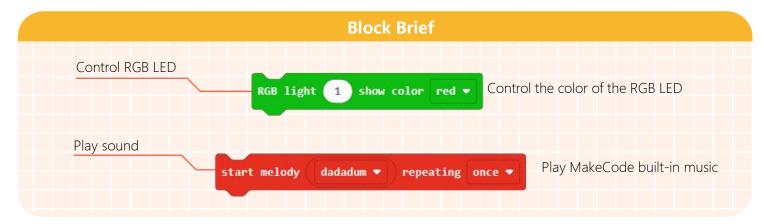
How is the movement state when the two motors are rotating at different speeds and directions? Program Maqueen Plus V2 to explore, and complete the form below. Tip: Just need to change the direction and speed of the motor control block.

Group Left Motor		otor	Right Motor		Movement
Group	Speed	Direction	Speed	Direction	wovernent
1	200	Forward	200	Forward	Move forward
2	200	Forward	50	Forward	
3	50	Forward	200	Forward	
4	200	Backward	200	Backward	
5	200	Backward	200	Forward	

Chapter 4

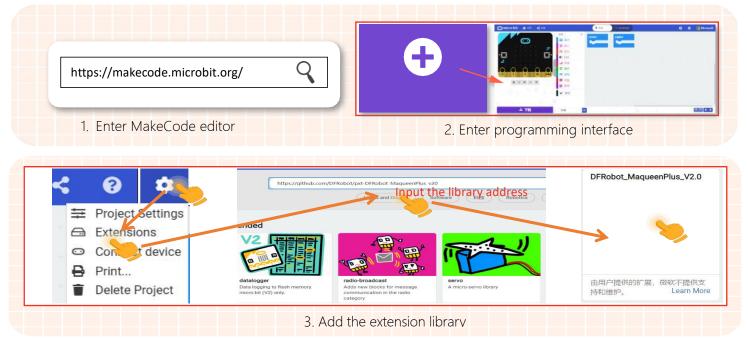

City Defender - A Police Car

There are so many city defender heroes in movies, and have you ever considered being one of them? Now let's turn this Maqueen Plus V2 into a city defender - a police car to make your dream come true!


Goal

- 1. Learn how to use the buzzer module
- 2. Learn how to use the RGB light module

Electronic Component


Command Learning

Hands-on Practice

Step 1 Create a New Project

- 1. Input <u>https://makecode.microbit.org/</u> into your browser to enter the MakeCode editor.
- 2. Click "new project" to enter the MakeCode programming interface.
- 3. Add the Maqueen Plus V2 library: https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20

Step 2 Programming

1. Program the car to make it drive

Both motors move forward at the speed of 255.

on start	forever
initialize via I2C until success	set all ▼ motor direction rotate forward ▼ speed 255

2. Program the lighting effect

Since the lights on a police car emit red light and blue light alternatively, the next step here is to exchange the lighting color every 1s.

on start	Knowledge Expansion
forever	 Why are the lights on police car red and blue? 1. Alert other drivers of its presence, so that they can maneuver out the way. 2. The color red is associated with stop and warning, but most tail lights are also red, so blue lights really stand out and help to alert
RGB light range from 0 with 3 leds show color red ▼ pause (ms) 1000 ▼ RGB light range from 0 with 3 leds show color blue ▼	others in these situations.
pause (ms) 1000 -	

3. Program the siren

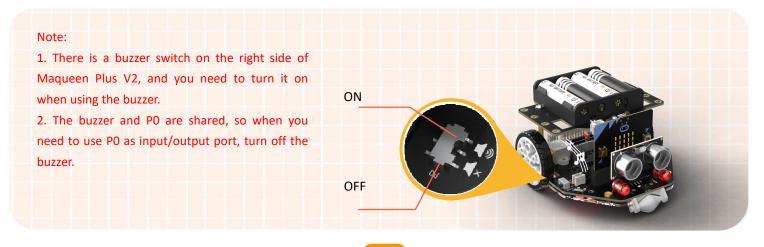
Play the built-in sound "dadadum" repeatedly to simulate the sound of a siren.

ir	nitialize via I2C until success
st	tart melody dadadum 🔻 repeating forever 💌
	et all v motor direction rotate forward v speed (255)

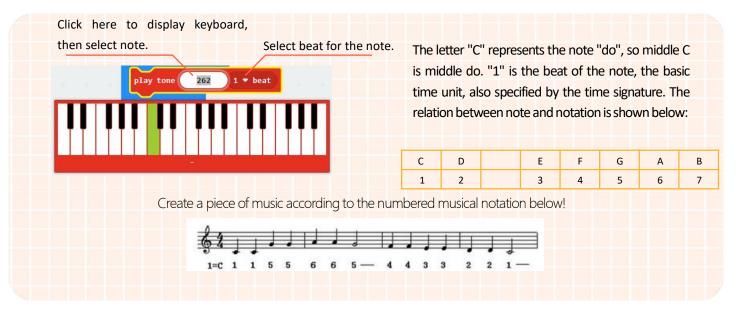

4. The whole program is shown below.

on start initialize via I2C until success	forever RGB light range from 0 with 3 leds show color red ▼
<pre>start melody (dadadum ▼) repeating forever ▼ set all ▼ motor direction rotate forward ▼ speed 255</pre>	pause (ms) 1000 • RGB light range from 0 with 3 leds show color blue • pause (ms) 1000 •

5. Name your project as "City Defender-A Police Car" and save it.


Step 3 Download Program

 Connect to a computer: Connect the micro:bit to your computer with a USB cable before downloading. There will be a hard disk named "micro:bit" appearing in the computer when the connection is successful.
 Download the program: Click "Download" to download your project into the micro:bit hard disk.
 Plug in the micro:bit board: After downloading the program, unplug the USB cable and plug the micro:bit board into Maqueen Plus V2.


Step 4 Effect Display

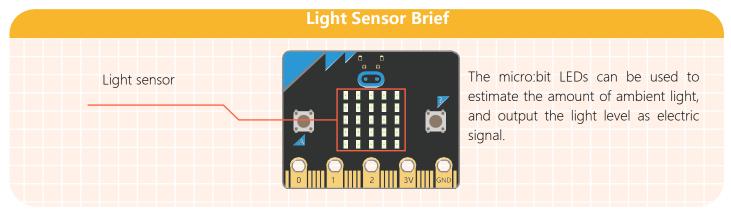
Turn on the power switch, then Maqueen Plus V2 moves forward with siren wailing and lights flashing, just like a police car.

Think & Explore

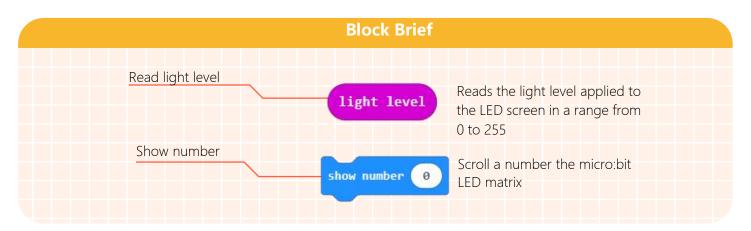
We have learned how to play the built-in music in MakeCode. Do you want to make a piece of your music? Try it with Maqueen Plus V2. The block shown below is used to play notes.

Chapter 5

Light Sensing Robot

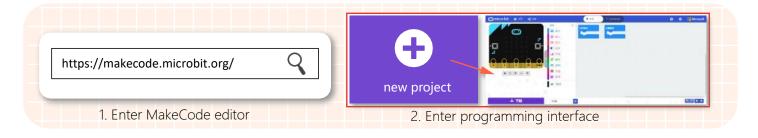

Without light, there would be no sight. We are able to see because light from an object can move through space and reach our eyes. But human eyes are very sensitive to light, both too strong and weak lights are harmful to our eyes. How do we know the changes in light brightness? Maqueen Plus V2 can help us achieve that.

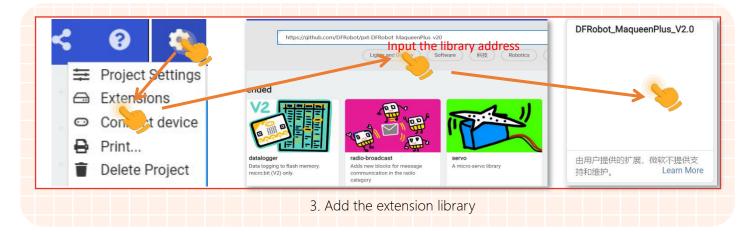
Goal


1. Learn the light sensor

2. Learn how to use the "show number" block

Electronic Component


Command Learning



Hands-on Practice

STEP 1 Create a new project

- 1. Input <u>https://makecode.microbit.org/</u> into your browser to enter the MakeCode editor.
- 2. Click "new project" to enter the MakeCode programming interface.
- 3. Add the Maqueen Plus V2 library: <u>https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20</u>

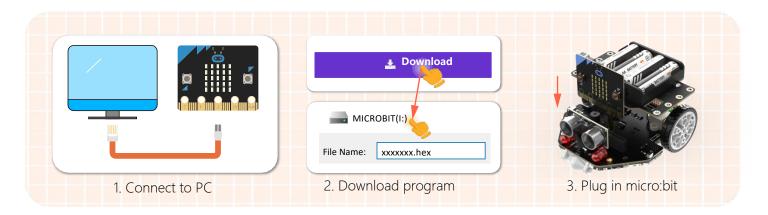
STEP 2 Programming

1. Put the "show number" block into the "forever" block, then the robot eyes will read the light level constantly.

on start initialize via I2C until success	forever show number 0	Note: the default	"show number"	block displays 0 by	

2. To display the ambient light level on the micro:bit LED screen in real-time, we have to put the "light level" block into the "show number" block.

on start	forever
initialize via I2C until success	show number light level


3. The complete program is shown below.

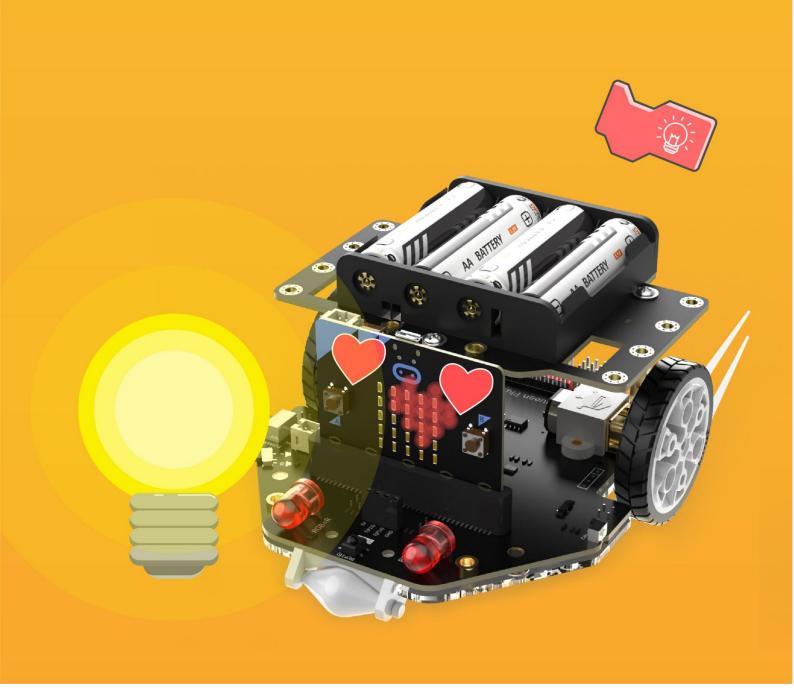
on start	forever
initialize via I2C until success	show number light level

4. Name your project as "Light sensing robot" and save it.

STEP 3 Download Program

- 1. Connect to PC: connect the micro:bit to your computer with a USB cable before downloading. There will be a hard disk named micro:bit appearing in the computer when the connection is successful.
- 2. Download the program: download your project into the micro:bit hard disk.
- 3. Plug in the micro:bit board: after downloading the program, plug the micro:bit board into Maqueen Plus V2.

STEP 4 Effect Display


Turn on the power switch of Maqueen Plus V2, the LED screen will constantly display the current light level! The following are the light levels measured at the office and photo studio.

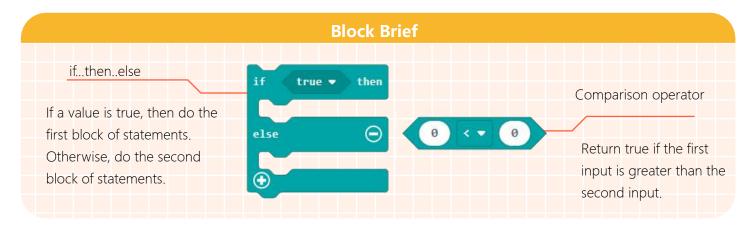
Place	Light Level	
Office	125	
Photo studio	255	
Note: data in the expe	eriments are for reference only.	

Think & Explore

Light level varies from places, let our Maqueen Plus explore! After that, please think if the light level of each place is reasonably designed.

Place	Light Level	
Kitchen	255	
living-room		
Bedroom		
Study room		

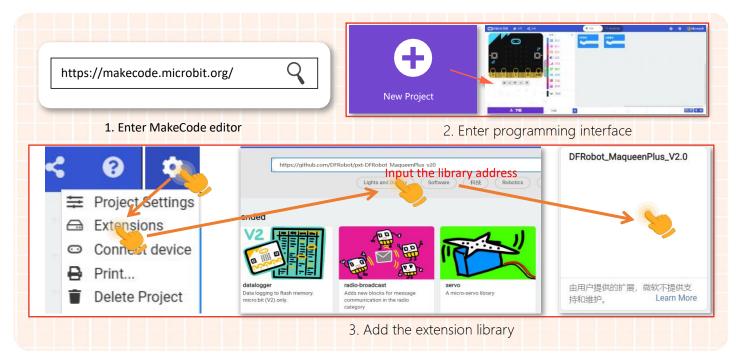
Chapter 6


Moth Robot

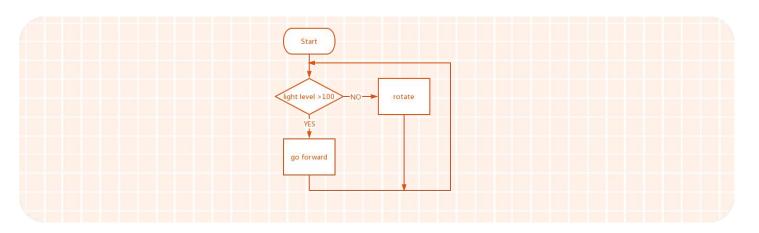
You must have seen that at summer night, plenty of moths fly around the streetlight, flame, and any places with bright light. Why are moths attracted to flame? One idea is that moths are able to find their way partly by using light as a compass. You know what, Maqueen Plus V2 can turn into a moth robot because it has a pair of light-sensitive eyes.

Goal

- 1. Learn condition block
- 2. Design a flowchart to help program

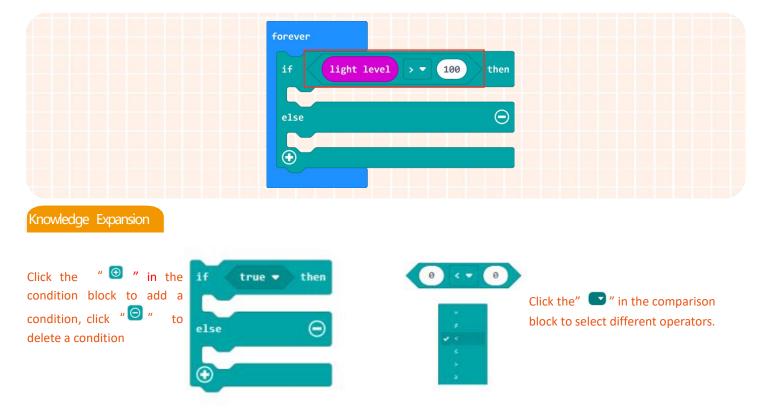

Command Learning

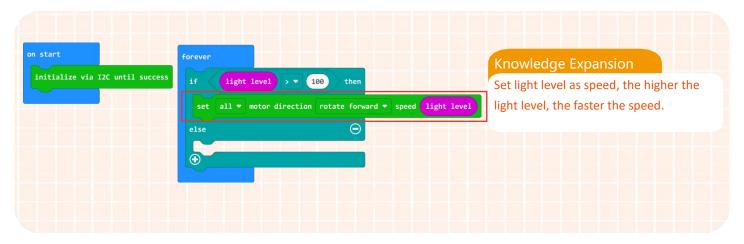
Hand-on Practice


STEP 1 Create a New Project

- 1. Input https://makecode.microbit.org/ into your browser to enter the MakeCode editor.
- 2. Click "new project" to enter the MakeCode programming interface.
- 3. Add the Maqueen Plus V2 library: https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20

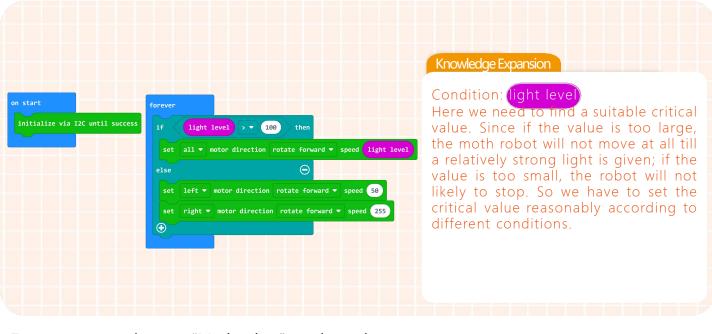
STEP 2 Programming


1. When the light level is more than the given value (100 in the example), the moth robot moves towards the light source; when less than that value, the robot revolves around its center. Drawing a corresponding flowchart according to the above functions is gonna help us a lot with programming!


2. Put the "if...then...else" block inside the "forever" block, and embed the comparison operator block into it.

 Maqueen Plus V2 	rue then forever if else	• 0 then
Comparise Comparise E Variables Math 0		

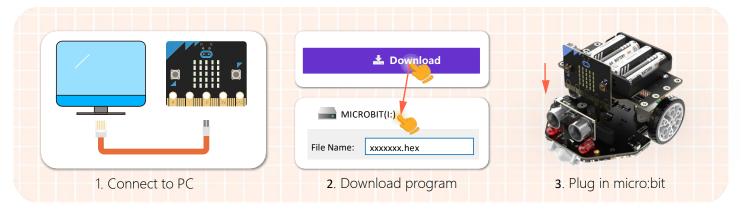
3. The key point of the whole program is the condition statement "light level >100". Different operations will be executed according to the result of the condition block.


4. When the condition "Light level>100" is true, the robot car moves forward at the speed of the current light level.

5. When the condition "Light level>100" is false, the Maqueen Plus V2 rotates around its center.

on start	forever
initialize via I2C until success	if light level > 100 then
	set all • motor direction rotate forward • speed light level
	else
	set left ▼ motor direction rotate forward ▼ speed 50
	set right 🔻 motor direction rotate forward 💌 speed 255

6. The complete program is shown below.

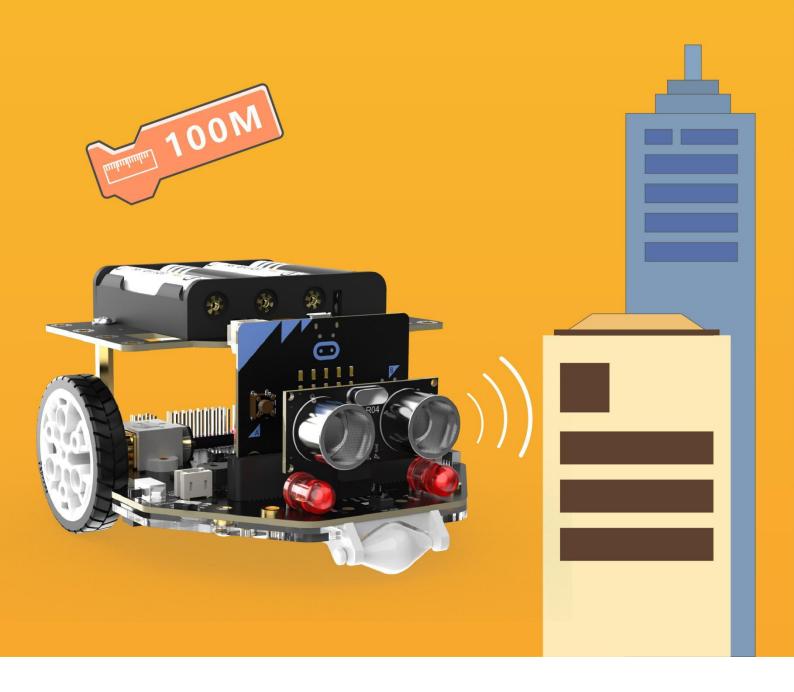

7. Name your project as "Moth robot" and save it.

STEP 3 Download Program

1.Connect to PC: connect the micro:bit to your computer with a USB cable before downloading. There will be a hard disk named micro:bit appearing in the computer when the connection is successful.

2.Download the program: download your project into the micro:bit hard disk.

3.Plug in the micro:bit board: after downloading the program, plug the micro:bit board into Maqueen Plus V2.


STEP 4 Effect Display

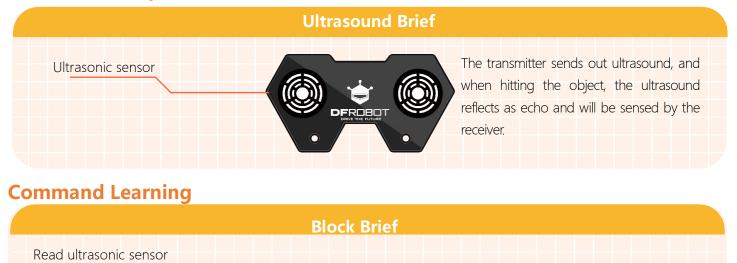
Turn on the power switch, then Maqueen Plus V2 will turn into a moth robot. When the light level is over 100, our moth robot moves towards the light, the brighter the light is, the faster Maqueen Plus V2 runs. When the light is less than 100, the robot will lose its way and rotate around. So funny, right? Come to play with this moth robot!

Think & Explore

Let' s do a robot running competition! Use a flashlight to lead Maqueen Plus V2 to run forward, the one who uses the least time to finish the game will be the winner. Remember, do not cross the line. Invite your friends to join the game!

Tips: maintaining speed within a reasonable range holds the key to success.

Chapter 7

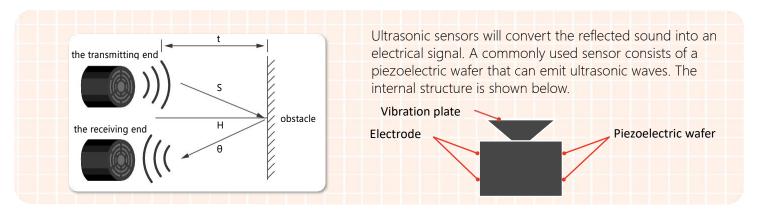

Little Ranging Expert

We have known that Maqueen Plus V2 is such a changeable robot with various functions, but more surprisingly, he can measure distance using his ultrasound eyes. With this buddy, you can say goodbye to your measuring tool.

Goal

- 1. Get to know ultrasound
- 2. Learn the principle of ultrasound
- 3. Measure distance using ultrasound

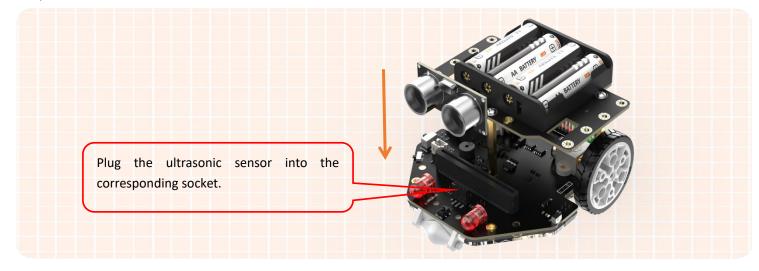
Electronic Component


set ultrasonic sensor TRIG pin P13 < ECHO pin P14 < read data company:cm Read the distance value detected by the ultrasonic sensor, unit: cm. Preset the transmitter (TRIG) and receiver (ECHO) on the sensor.

What is ultrasound?

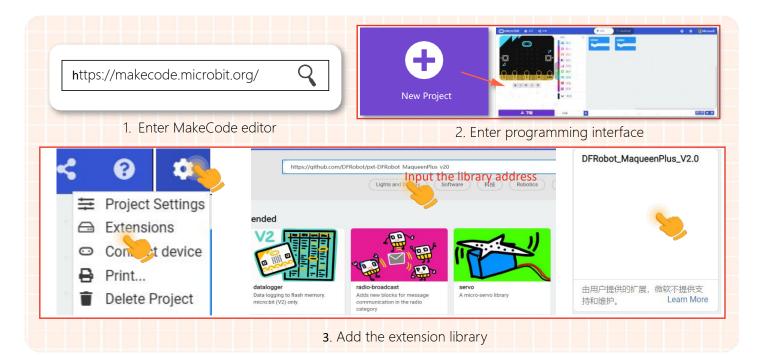
As we know, when vibrating, objects produce sound waves. Some of them can be heard by human ears, while others cannot. Scientists named the vibrating times per second as the sound frequency with its unit named as Hertz. Almost all human beings are able to hear the sound frequencies ranging from 20 to 20000Hertz. Sound frequencies out of that range are inaudible to humans. For those sound, the scientists name it as "Ultrasound".

How does an ultrasonic sensor measure distance?

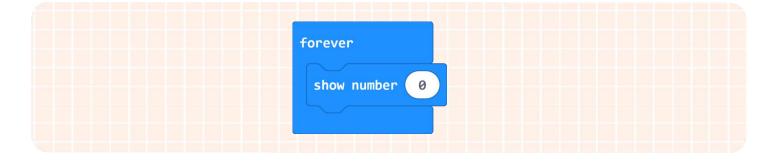

Ultrasonic sensors work by sending out a sound wave at a frequency above the range of human hearing. The sensors determine the distance to a target by measuring time lapses between the sending and receiving of the ultrasonic pulse.

Hands-on Practice

Hardware Connection:


The pin connection is shown below:

Step 1 Create a New Project

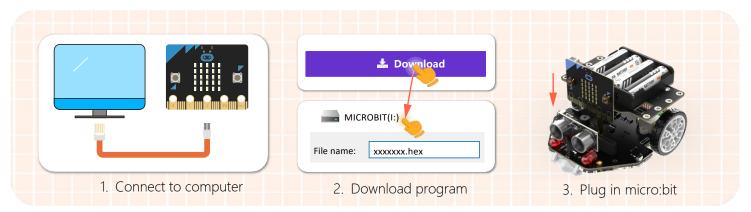

1.Input <u>https://makecode.microbit.org/</u> into your browser to enter the MakeCode editor.

- 2.Click "new project" to enter the MakeCode programming interface.
- 3.Add the Maqueen Plus V2 library: https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20

Step 2 Programming

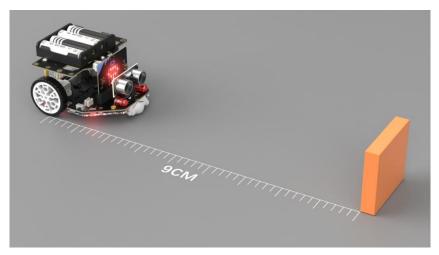
1. Place the "show number" block into the "forever" block, shown as below.

2. Put the distance value detected by the ultrasonic sensor inside the "show number" block to display the current distance on the micro:bit LED matrix in real time.

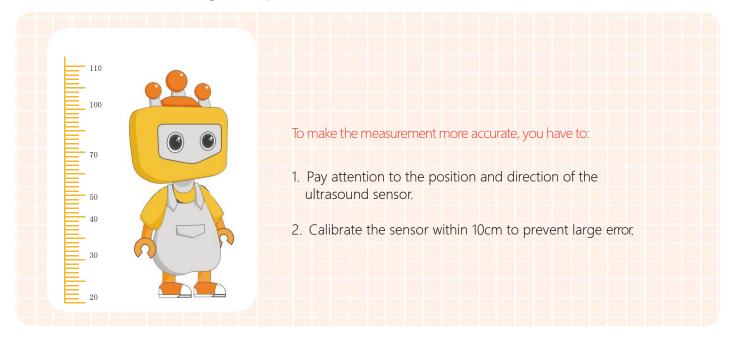


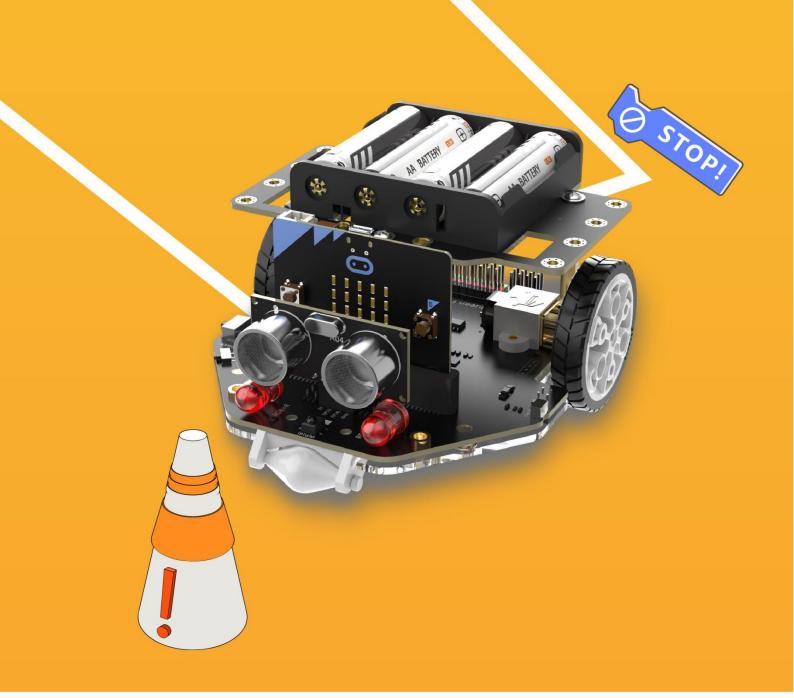
3. The entire program is shown below.

on start				
initialize v	ia I2C until success			
forever				
show number	set ultrasonic sensor TRIG	pin P13 🔻 ECHO pin	P14 🔻 read data c	ompany:cm


4. Name your project as "Little ranging expert" and save it.

Step 3 Download Program


Step 4 Effect Display


Turn on the power switch, then we can use Maqueen Plus V2 to measure distance. The detected distance will be displayed on micro:bit.

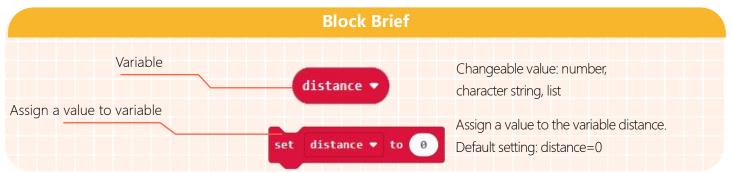
Think & Explore

How do we measure the height of a person with an ultrasonic sensor?

Chapter 8

Auto-braking Robot

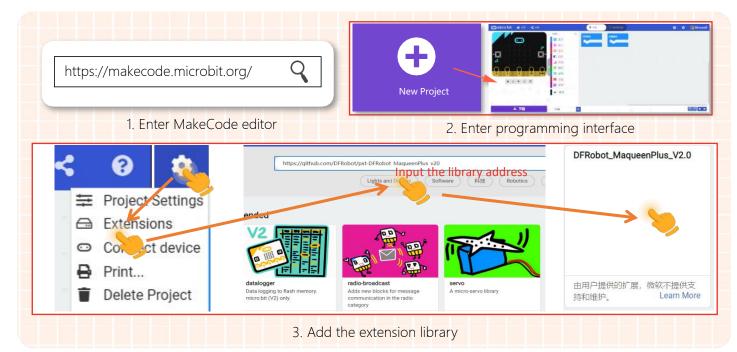
The most frequent cause of vehicle accidents is the unexpected existence of barriers while driving. An automated braking system will assist and minimize such collisions, and ensure driver safety and comfort. Based on the ultrasonic measurement principle, the auto-braking system can detect the distance between the car and the obstacle, then the robot car will brake automatically when very near the obstacle, which could be helpful for new drivers. Now let's turn Maqueen Plus V2 into an auto-braking robot.


Goal

- 1. Learn how to use variables.
- 2. Learn how to embed a condition block inside another one.

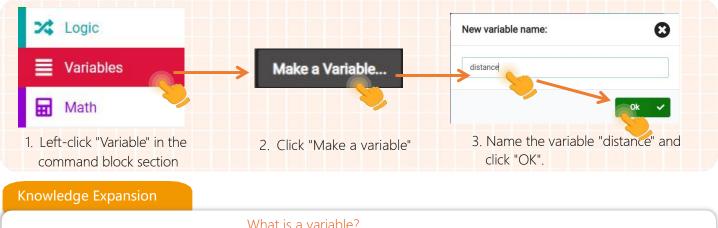
Electronic Component

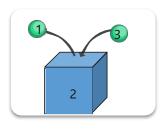
Command Learning


Hands-on Practice

Install Ultrasonic Sensor

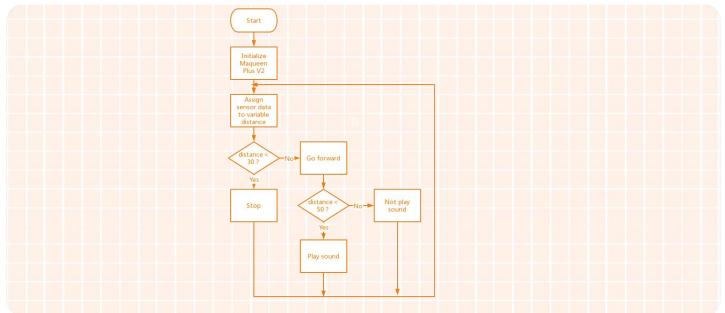
Our auto-braking robot needs to measure the distance between it and the obstacle ahead, so an ultrasonic sensor is necessary here.


Step 1 Create a New Project


- 1. Input <u>https://makecode.microbit.org/</u> into your browser to enter MakeCode editor.
- 2. Click "new project" to enter MakeCode programming interface.
- 3. Add the Maqueen Plus V2 library: https://github.com/DFRobot/pxt-DFRobot MaqueenPlus v20

Step 2 Programming

1. Create a variable and name it "distance".


What is a variable?

We may think of a variable as a container or box where we can store data that we need to use later, and each box can only hold one value (number, text and Boolean data) at a time. For example, use it to store an integer, after we put 1 into it, we put 2 into it, then we can only get 2 from this box. A new value will replace the previous one. The name of the box is the variable's name and the value of the variable is placed inside the box.

2. In this project, we need to monitor the distance value the sensor detected in real-time, so we have to assign the value to the variable "distance".

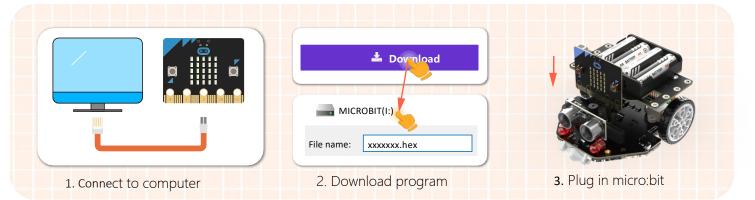
rever	Knowledge Expansion
set distance ▼ to set ultrasonic sensor TRIG pin P13 ▼ ECHO pin P14 ▼ read data company:cm	Then we can directly use the
	variable "distance" to call the distance value later.

3. When the robot car is near the obstacle (distance<50cm in the example), it keeps going and the buzzer keeps beeping to give an alarm. Once the distance between them is smaller than the preset value (distance<30cm in the example), the auto-braking robot stops.

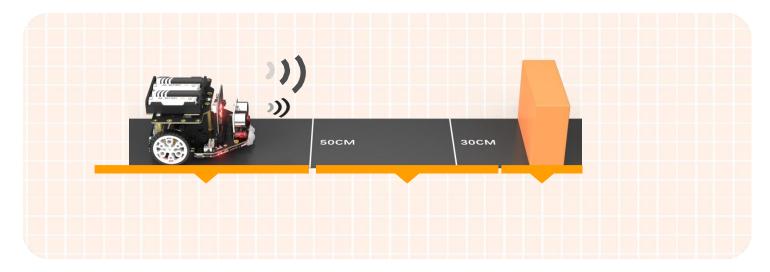
How to achieve that? Drawing a flowchart is gonna help us understand the program.

4. The robot car stops if the condition "distance < 30" is true and moves forwards if it's false.

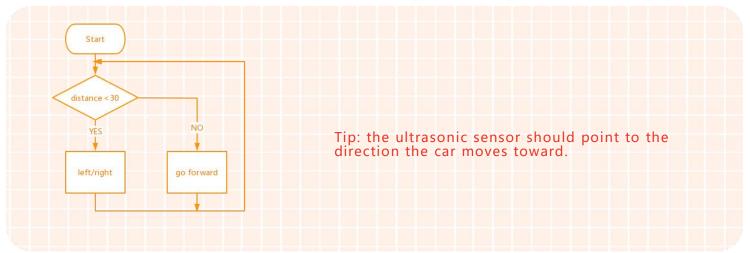
on start	forever
initialize via I2C until success	set distance ▼ to set ultrasonic sensor TRIG pin P13 ▼ ECHO pin P14 ▼ read data company:c
	if distance V < 30 then
	set all • motor stop
	else $igodot$
	set all 🔻 motor direction rotate forward 💌 speed 100

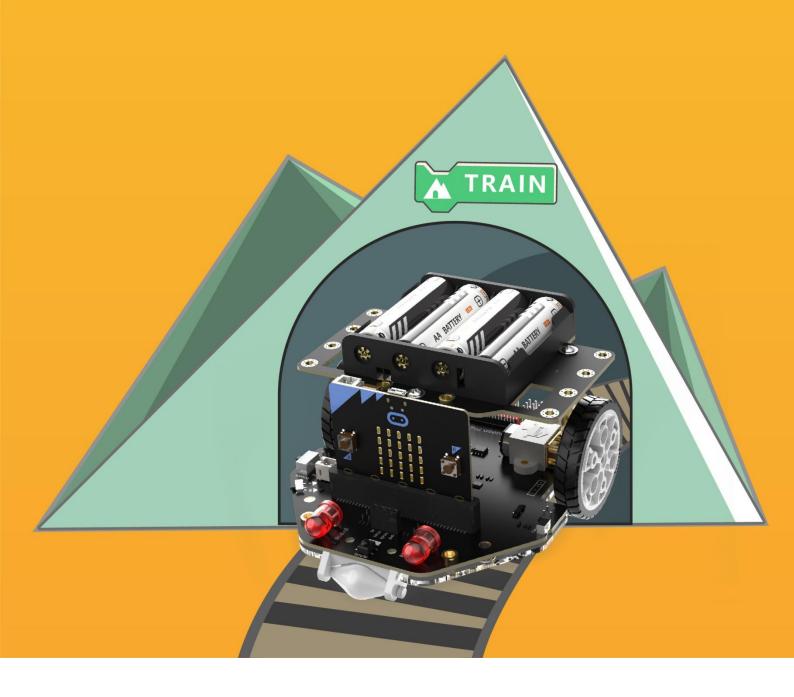

5. The buzzer keeps beeping if the condition "distance < 50" is true, otherwise, it stops making sound.

6. The complete program is shown below.


on start	forever
initialize via I2C until success	set distance 💌 to set ultrasonic sensor TRIG pin P13 🔍 ECHO pin P14 💌 read data company:cm
	if distance • < 30 then
	set all • motor stop
	else Θ
	set all ▼ motor direction rotate forward ▼ speed 100
	if distance V < V 50 then
	play tone Middle C for 1 - beat
	else Θ
	stop all sounds

Step 3 Download Program


Step 4 Effect Display

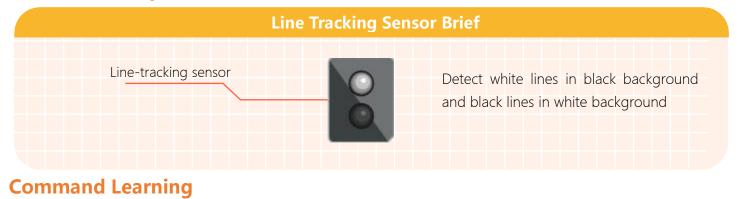

After we completed all the above steps, put an obstacle in front of the Maqueen Plus V2 car, and turn on the power switch. When the detected distance is smaller than 50, the buzzer keeps beeping; distance < 30, the car stop.

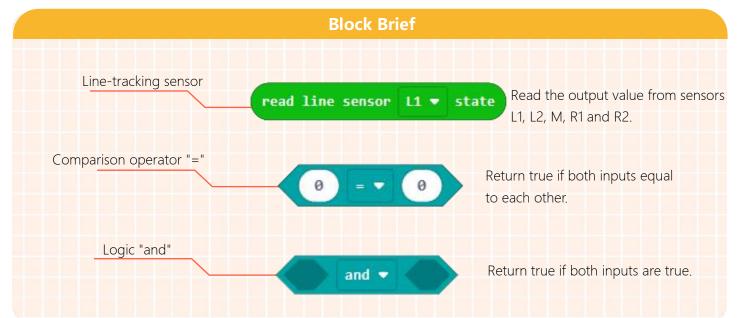
Think & Explore

We have turned Maqueen Plus V2 into an automated braking robot. The robot car stops when it is very near an obstacle, but can you let Maqueen Plus V2 bypass it? Make an obstacle avoidance car according to the flowchart below.

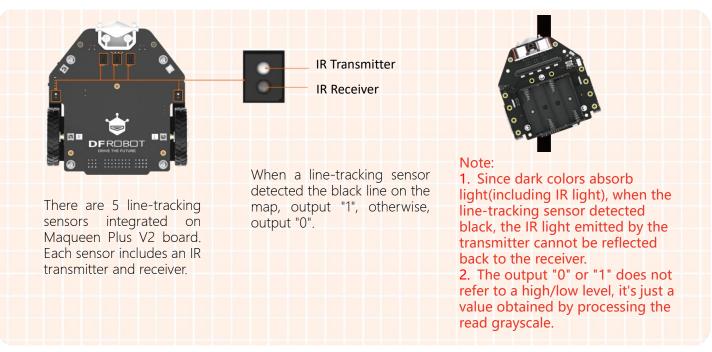
Chapter 9

Line-tracking Robot

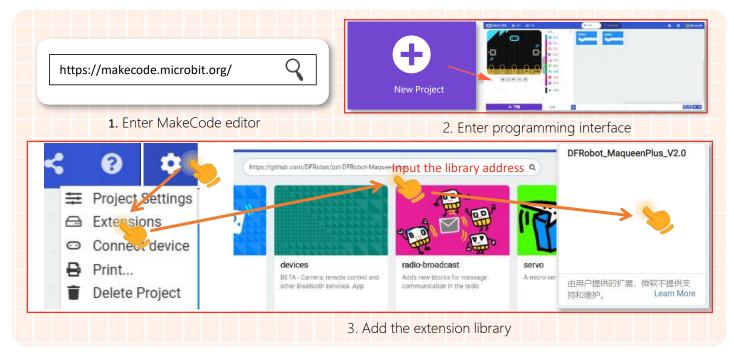

Our line-tracking robot is fond of exploring things with a map. No matter how complicated the road is, give him a long enough track, he will trace it to the end of the world. Let's step on an adventure with the Maqueen Plus V2 robot!


47

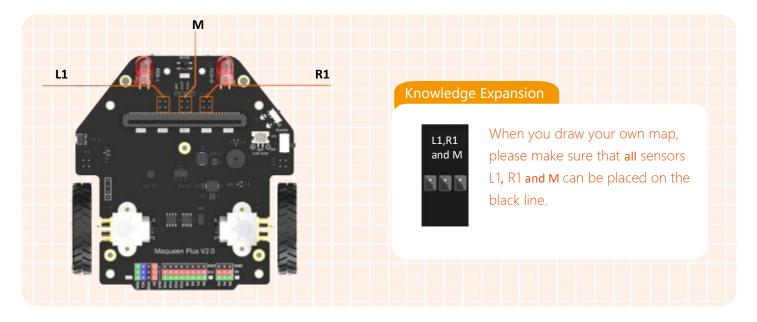
Goal


- 1. Learn the principle of the line-tracking sensor
- 2. Learn the logic "and"

Electronic Component


How does a line-tracking sensor work?

Hands-on Practice


Step 1 Create a New Project

- 1. Input <u>https://makecode.microbit.org/</u> into your browser to enter the MakeCode editor.
- 2. Click "new project" to enter the MakeCode programming interface.
- 3. Add the Maqueen Plus V2 library: https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20

Step 2 Programming

Maqueen Plus V2 moves along the black line on the map. If you don't have a map, you can make one using black adhesive tape. (Line-tracking Sensor R1, L1 and M will be used in this project.)

1. There are three possibilities when Maqueen Plus V2 drives on the map.

Status Image	Sensor Status	Detection	Output	Motor Movement
	M is on the black line	The middle sensor detected the black line.	M = 1	Go straight
	L1 is on the black line, R1 is not.	Only the left sensor detected the black line.	L1 = 1 R1 = 0	Turn left
	L1 is not on the black line, R1 is on the line.	Only the right sensor detected the black line	L1 = 0 R1 = 1	Turn right

2. Draw the corresponding program flowchart.

3. Since there are two conditions to judge, the outputs from sensor R1 and L1, we need to use a "and" block to combine them.

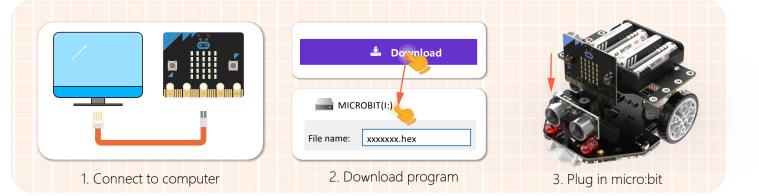
4. When sensor M detected the black line, Maqueen Plus V2 car moves forward.

on start initialize via I2C until success
forever if read line sensor M • state = • 1 then set all • motor direction rotate forward • speed 100 else \bigcirc

5. When only the right sensor (R1) detected the black line, Maqueen Plus V2 car turns right.

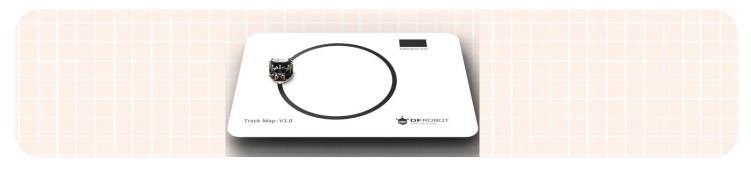
	forever if read line sensor M ▼ state = ▼ 1 then set all ▼ motor direction rotate forward ▼ speed 100
	set all ▼ motor direction rotate forward ▼ speed 100
	else 🕒
read line sensor R1 - state = 1 then	if read line sensor L1 \checkmark state = \checkmark 0 and \checkmark
	set left ▼ motor direction rotate forward ▼ speed 160
	set right - motor direction rotate forward - speed 30
	if true ▼ then
	set right ▼ motor direction rotate forward ▼ speed 30

6. When only the left sensor (L1) detected the black line, Maqueen Plus V2 car turns left.

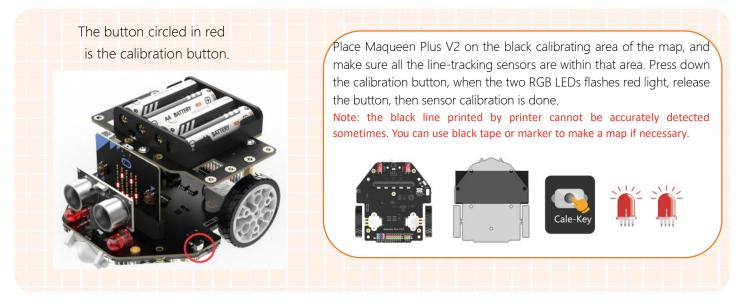

	nitialize via I2C until success
for	rever
i	f read line sensor M V state = V 1 then
	set all ▼ motor direction rotate forward ▼ speed 100
e	
	if (read line sensor L1 ▼ state) = ▼ 0 and ▼ (read line sensor R1 ▼ state) = ▼ 1 then
	set left motor direction rotate forward speed 160
	set right v motor direction rotate forward v speed 30
	if read line sensor L1 • state = • 1 and • read line sensor R1 • state = • 0 the
	set right 🕶 motor direction rotate forward 💌 speed 160
	set left 💌 motor direction rotate forward 💌 speed 30

7. The complete program is shown below:

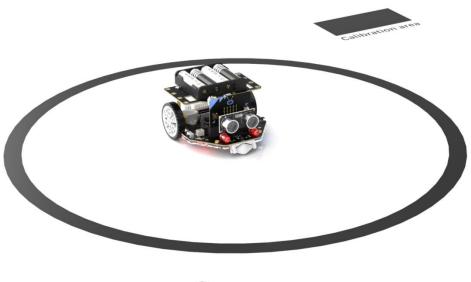
initia	lize via I2C until success	
forever		
if	read line sensor M v state = v 1 then	
set	all - motor direction rotate forward - speed 100	
else	Θ	
if	read line sensor L1 • state) = • 0 and • read line sensor R1 • state) = • 1	th
se	t left - motor direction rotate forward - speed 160	
	t right - motor direction rotate forward - speed 30	
•		
if	read line sensor L1 🔻 state = 🔹 1 🛛 and 🗸 read line sensor R1 👻 state = 💌 0	the
set	t right • motor direction rotate forward • speed 160	_//
	t left • motor direction rotate forward • speed 30	
•		
\odot		


8. Name your project as "Line-tracking Robot" and save it.

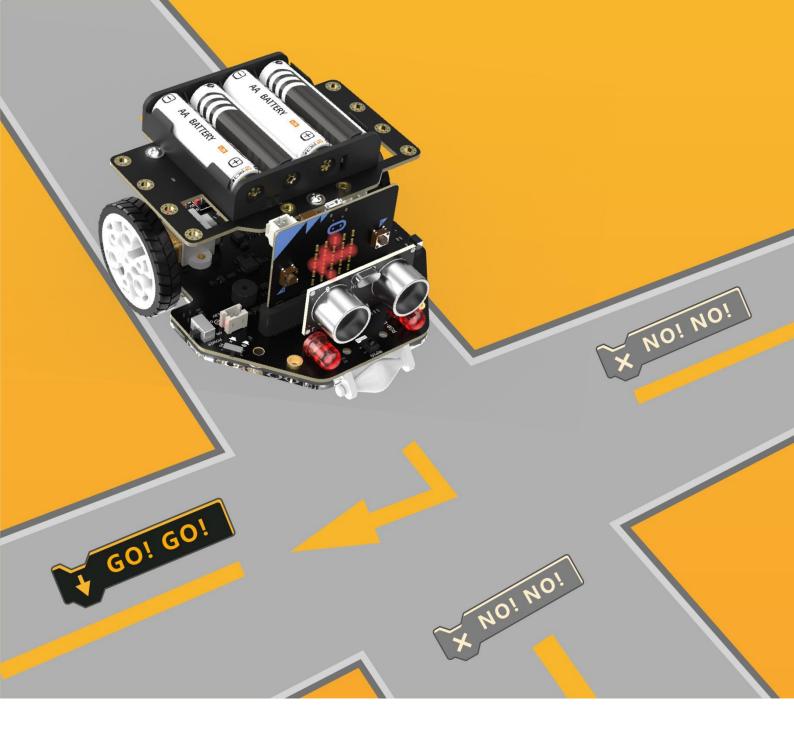
Step 3 Download Program


Step 4 Effect Display

Turn on the power switch after all the above steps are done, put Maqueen Plus V2 car on the map, then it will automatically move along the black line, just like a track train!


Extension-Sensor Calibration

The line-tracking sensors on Maqueen Plus V2 can be directly used since they are factory calibrated. But if you find that your sensors cannot detect black line accurately, you can calibrate them in the way shown below:



Think & Explore

With the development of technology, sweeping robot is gradually becoming a part of our family life. Simply place it on the floor and turn it on, here it goes! To prevent the robot from falling off the stairs, the bottom of the robot usually is surrounded by many sensors. Our Maqueen Plus V2 has 5 line-tracking sensors, so it can totally meet the requirements. Let's make a sweeping robot with Maqueen Plus V2. Take the black line on the map as the edge of the stairs, and the robot will be only allowed to move within that area.

-12.0

Chapter 10

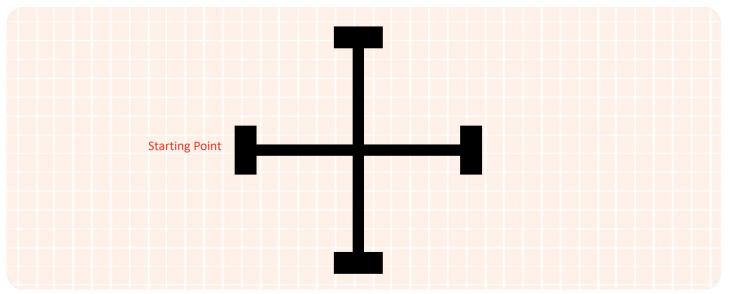
Tour of Crossroad

Standing at a crossroad, Maqueen Plus V2 is wondering which way he should go. Every road is so unique. Well, why not try all the roads? That sounds like a good idea, right? Let's help Maqueen Plus V2 to start his tour of the crossroads!

Goal

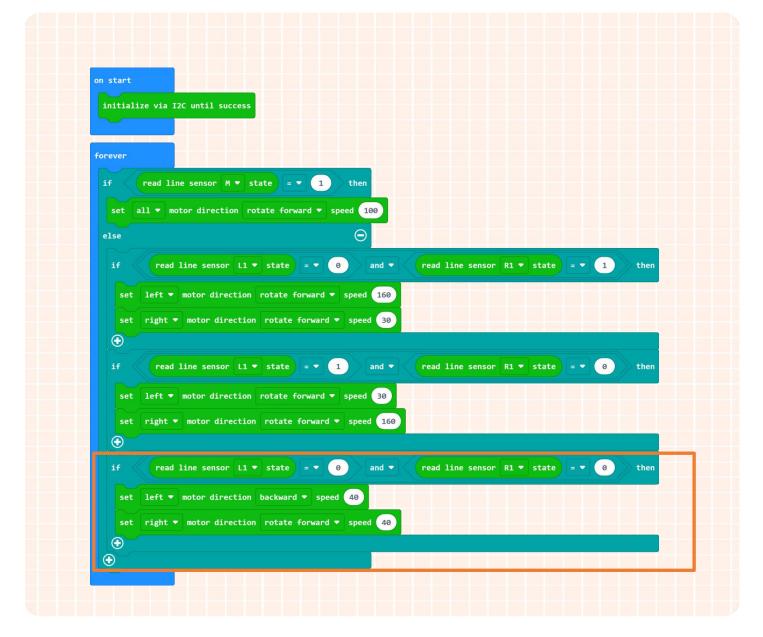
Learn the use of multiple line-tracking sensors

Hands-on Practice


Step 1 Create a New Project

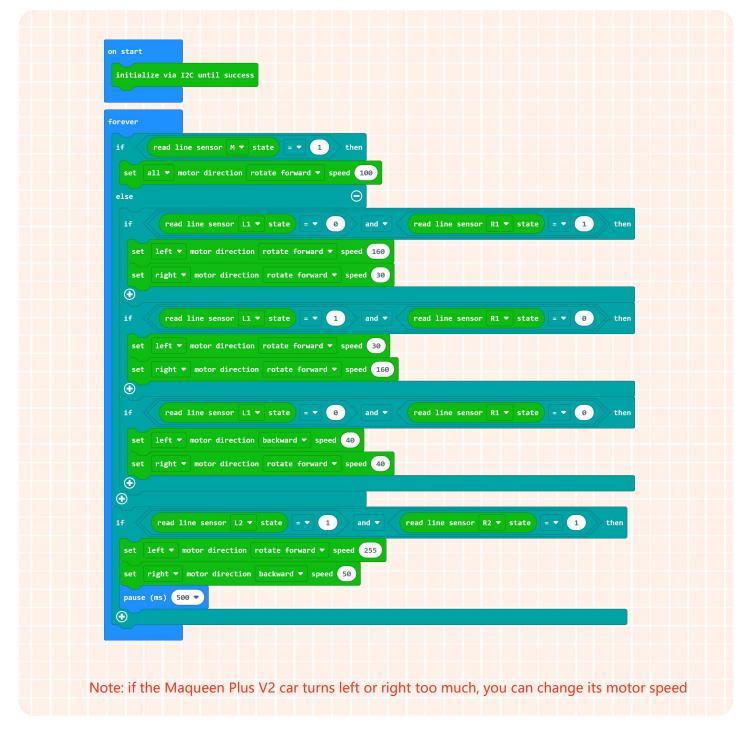
- 1. Input https://makecode.microbit.org/ into your browser to enter the MakeCode editor.
- 2. Click "new project" to enter the MakeCode programming interface.
- 3. Add the Maqueen Plus V2 library: https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20

Step 2 Programming

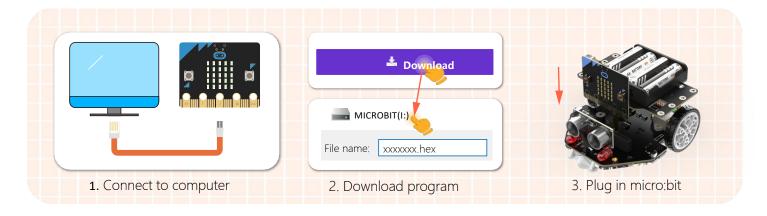

1.In this project, we need to prepare a crossroad map. Maqueen Plus V2 will try all roads of the crossroad, and then back to the starting point. How can we realize that by programming? In the process of line-tracking, Maqueen Plus V2 turns left/right at the intersection, and then turns around at the end of the road. Repeat this series of actions all the time.

2.First, complete the program of line-tracking.

on start
initialize via I2C until success
forever
if read line sensor M - state - 1 then
set all • motor direction rotate forward • speed 100
else Θ
if read line sensor L1 • state = • 0 and • read line sensor R1 • state = • 1 then
set left • motor direction rotate forward • speed 160
set right 🔻 motor direction rotate forward 💌 speed 30
\odot
if read line sensor L1 • state = • 1 and • read line sensor R1 • state = • 0 then
set left 🔻 motor direction rotate forward 💌 speed 30
set right 💌 motor direction rotate forward 💌 speed 160

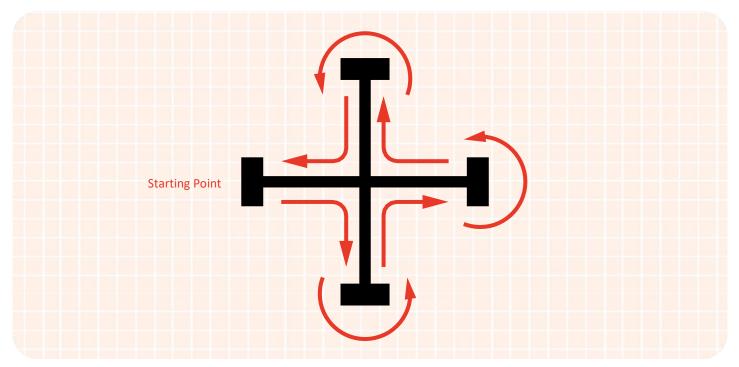

3. When no black line is detected by sensors L1 and R1, it means that the car drives out of the black track. Now let the Maqueen Plus V2 spin around until the black track is found again.

4. When the sensors L2 and R2 detected the black line, it means that the car has arrived at the intersection or the end of the road, and the car needs to spin around to find the black track again.


on	start
	nitialize via I2C until success
fo	even
1	f read line sensor M v state = v 1 then
	set all 💌 motor direction rotate forward 💌 speed 100
	lse
	if read line sensor L1 - state = • 0 and • read line sensor R1 - state = • 1
	set left v motor direction rotate forward v speed 160
	set right V motor direction rotate forward V speed 30
	if read line sensor L1 ▼ state = ▼ 1 and ▼ read line sensor R1 ▼ state = ▼ 0
	set left ▼ motor direction rotate forward ▼ speed 30
	set right 🔻 motor direction rotate forward 💌 speed 160
	if read line sensor L1 - state = • 0 and • read line sensor R1 - state = • 0
	set left ▼ motor direction backward ▼ speed 40
	set right ▼ motor direction rotate forward ▼ speed 40
	f read line sensor L2 🔻 state = 🗨 1 and 👻 read line sensor R2 💌 state = 🗨 1
	set left - motor direction rotate forward - speed 255
	set right • motor direction backward • speed 50
	pause (ms) 500 •
	$\overline{\mathbf{D}}$

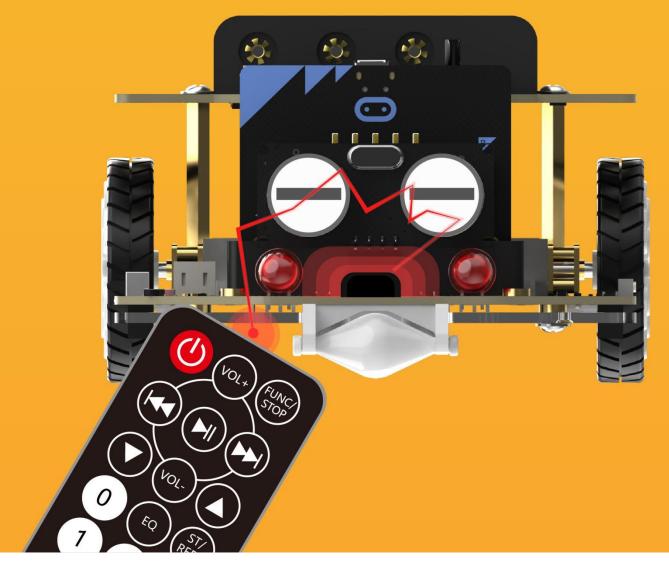
5. The complete program is shown below.

6.Name your project "Tour of crossroad" and save it.


Step 3 Download Program

58

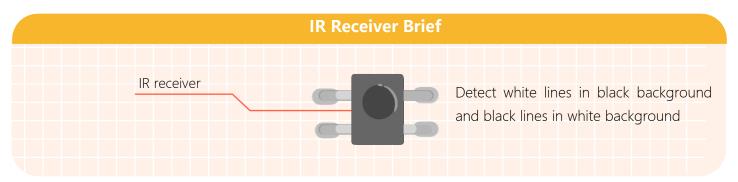
Step 4 Effect Display


When you completed all the steps, put Maqueen Plus V2 on the crossroad map, and turn on its power switch.

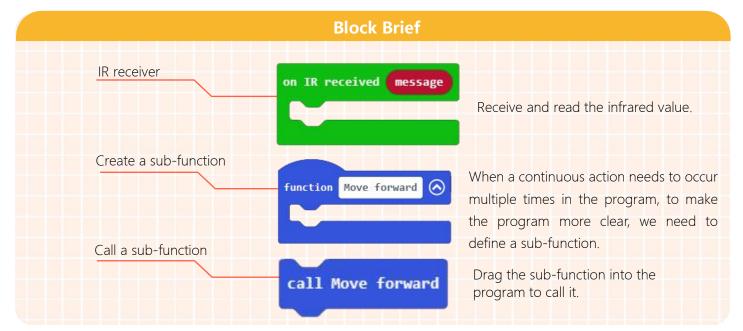
Think & Explore

When Maqueen Plus V2 arrives at the intersection, he will turn right, well, now let's make its right RGB LED flash while turning right, and both RGB LEDs flash before turning around. Tip: add RGB blocks in the program above.

Chapter 11


IR-controlled Robot

The invention of remote controllers allows people to operate devices from a certain distance, which brings a lot of convenience to our daily life. IR remote controller is the most commonly used one. In this chapter, we will use an IR remote controller with our Maqueen Plus V2 to make an "IR-controlled Robot".


Goal

- 1. Learn how to use function block
- 2. Learn how to use IR remote controller to control motor

Electronic Component

Command Learning


Hands-on Practice

We will use an IR remote controller to operate our Maqueen Plus V2, so we have to get the key value first. The decimal number of each key on the remote controller is shown below.

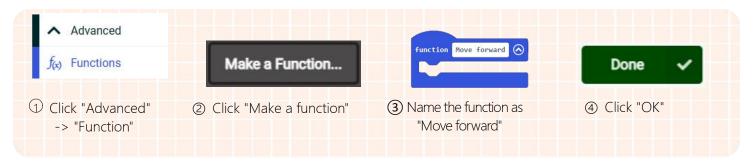
			Key Value			
(U) (VOL+) (FUNC/) STOP	Кеу	Value	Кеу	Value	Кеу	Value
	Red key	0	Up arrow	10	5	21
	VOL+	1	0	12	6	22
	FUNC/STOP	2	EQ	13	7	24
	Left arrow	4	ST/REST	14	8	25
123	Pause	5	1	16	9	26
4 5 6	Right arrow	6	2	17		
789	Down arrow	8	3	18		
	VOL-	9	4	20		

Step 1 Create a New Project

- 1. Input https://makecode.microbit.org/ into your browser to enter the MakeCode editor.
- 2. Click "new project" to enter the MakeCode programming interface.
- 3. Add the Maqueen Plus V2 library: https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20

Step 2 Programming

1. Drag the IR receive block to the editing section.


C Led	on IR received message
Maqueen Plus V2	on in received message
? IR	
Radio	

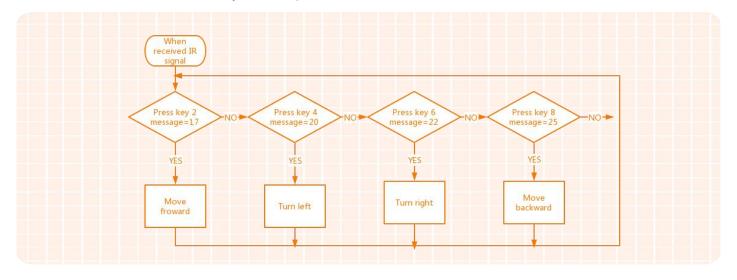
2. After we dragged the IR receive block to the editing section, there will be a variable named "message" appearing in the variable command section for storing the key value of the IR remote controller.

Variables
Make a Variable
set message 🔹 to 🥹
change message • by 1

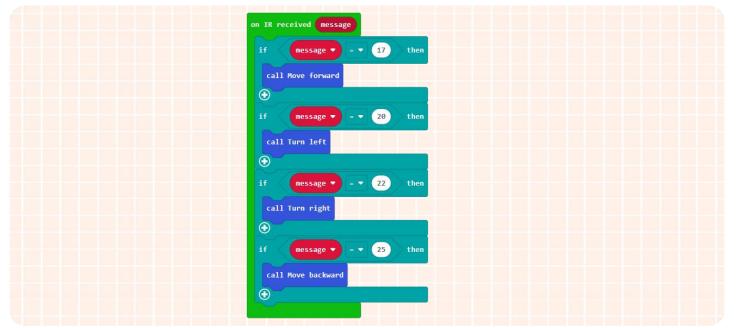
62

3. Create a function and name it "Move forward".

Knowledge Expansion


What is a function?

A function, also known as procedure or subroutine, can be defined as the organized block of reusable code which can be called whenever required. Generally, a large program can be divided into many basic building blocks and each block can realize a specified function. A function can be called multiple times by other main functions and sub-functions, which not only reduces the workload of rewriting the program segment, but also improves the utilization of the program.


4. Create functions "Move backward", "Turn left" and "Turn right" in the same way above. The customized function will be shown in the editing section and the command block section.

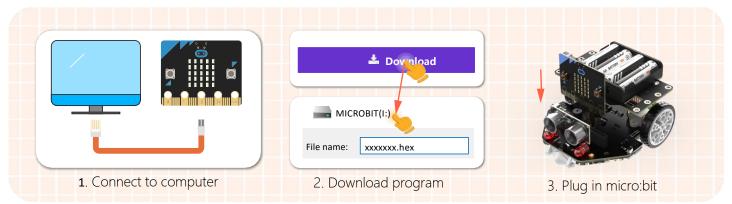
function Move forward 📀	function Turn left 📀	call Move forward	call Turn left
function Move backward Orac	function Turn right 🕥	call Move backward	call Turn right

5. How can we use the keys 2, 4, 6, and 8 on the IR remote controller to operate our Maqueen Plus V2 car? Let's draw a flowchart to analyze this question:

6. The flowchart above shows that we have to press the related key first, and then judge if the key value meets the condition. When the key value "message=17", call the function "Move forward"; when "message=20", call "turn left"; when "message=22", call "turn right"; when "message=25", call "move backward".

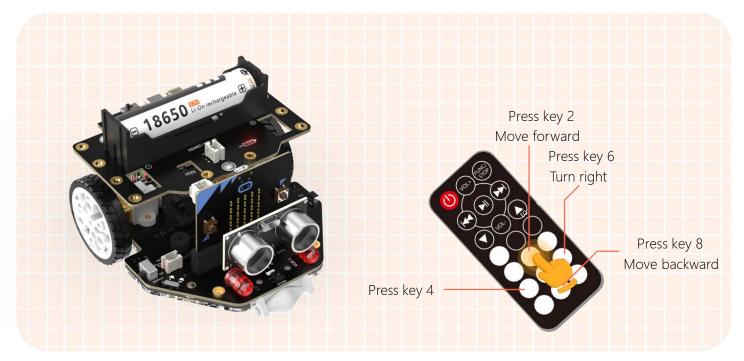
7. The above program is just a framework. Detailed operations need to be implemented in the functions. For example, press key 2, and the car moves forward. How to achieve that? Well, it's easy, just add a motor control block inside the move forward function.

As long as we have a clear logic, the realization of the program will be not so hard. Try completing the program!


8. The complete program is shown below.

on start	function Move forward
initialize via I2C until success	set all - motor direction rotate forward - speed 100
on IR received message	
if message • = • 17 then	function Move backward
call Move forward	set all 💌 motor direction backward 💌 speed 100
•	
if message ▼ = ▼ 20 then	
call Turn left	function Turn left
•	set left - motor direction backward - speed 0
if message ▼ = ▼ 22 then	set right 💌 motor direction rotate forward 💌 speed 255
call Turn right	
•	
if message ▼ = ▼ 25 then	function Turn right
call Move backward	set left ▼ motor direction rotate forward ▼ speed 255
•	set right 💌 motor direction backward 💌 speed 🔞

64


9. Name your project "IR-controlled robot" and save it.

Step 3 Download Program

Step 4 Effect Display


After completing all the above steps, use the IR remote controller to operate our Maqueen Plus V2!

Think & Explore

We may find that once we enabled the Maqueen Plus V2 to move, it won't stop until we turn off its power switch, which could be inconvenient for us to operate.

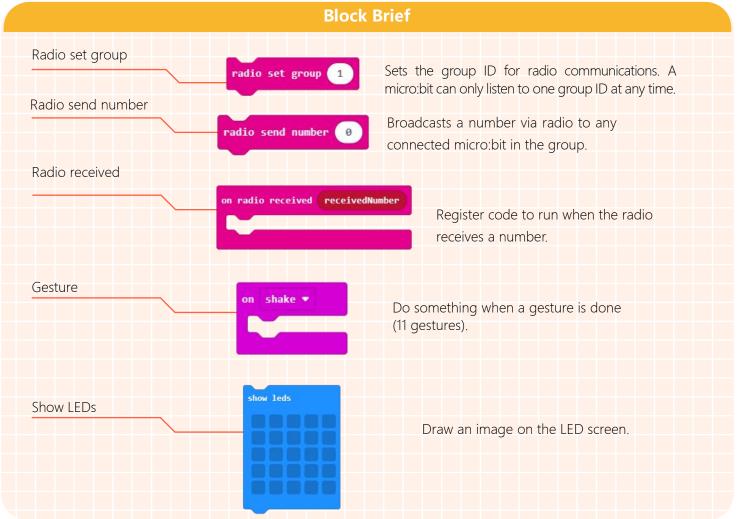
Now here is a task for you: use the red button on the remote controller to make Maqueen Plus V2 stop. Tip: create a function to stop the motor!

Chapter 12

Motion Sensing Robot

Have you ever tried motion-sensing games, like racing cars? This kind of game requires us to control the movement of the car on the screen by changing the direction of the remote controller. It is extremely exciting! Our Maqueen Plus V2 can also realize motion-sensing since the accelerometer on the micro:bit can detect the orientation of the board. With accelerometer and radio communication functions, we can make a similar motion-sensing game using Maqueen Plus V2.

Goal

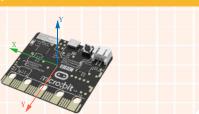

1. The basics of radio communication

2.Learn how to use the accelerometer sensor

Electronic Component

Figure of the Bluetooth and the acceleration sensor		
Bluetooth		
Allow two or more micro:bits communicate with each other, receive and send radio signals.		
Accelerometer		
The accelerometer on the micro:bit	micro:bit	
detects the acceleration in 3 planes: x, y and z.		

Command Learning



What is an accelerometer sensor?

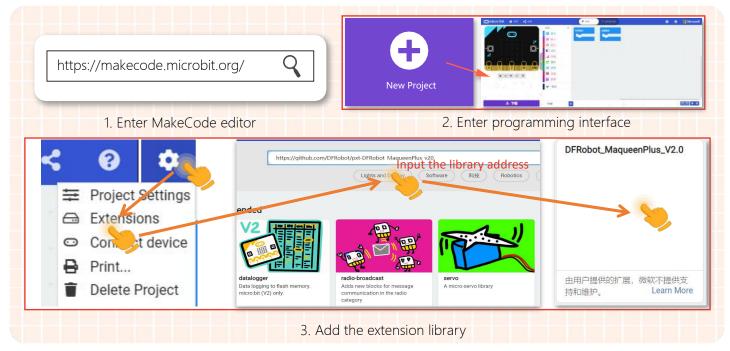
An accelerometer is a device that can detect the change in an object's acceleration. The onboard accelerometer of micro:bit can sense the motion of the micro:bit, including its movement, angle, gesture, and so on.

Introduction of the acceleration sensor

The micro: bit comes with a three-axis acceleration sensor that can detect gravity accelerations in three directions: x, y, and z. The measured value on each axis should be positive or negative. When the reading of one axis is 0, it indicates that the acceleration sensor is parallel to that axis. The different attitudes of the micro: bit is determined by calculating the vector sum of the three axes x, y, and z of the acceleration sensor. A vector is a quantity that has magnitude and direction, and vector sums refer to the sum of direction and magnitude.

Hands-on Practice

Motion Sensing Robot - Transmitting End


Before we start programming, let's analyze how to use the accelerometer sensor in this project.

The movement of the robot car is controlled by the gesture of micro:bit. When micro:bit logo faces up, an "Up arrow" shows on the LED screen, and then the car moves forward; When logo down, show "Down arrow" and the car moves backward; tilt left, show "left arrow" and the car turns left; tilt right, show "right arrow" and the car turns right.

Tip: to realize radio communication, we need two micro:bits here. One for transmitting signal (Transmitting end), one for receiving signals (Receiving end).

Step 1 Create a New Project

- 1. Input https://makecode.microbit.org/ into your browser to enter the MakeCode editor.
- 2. Click "new project" to enter the MakeCode programming interface.
- 3. Add the Maqueen Plus V2 library: https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20

Step 2 Programming

1. Enable the radio communication, and set the radio group to 1.

2. When the micro:bit logo is up, show an "Up arrow" on its LED screen, and send data 1 via radio to the Maqueen Plus V2.

on logo up 💌	
show leds	
	Knowledge Expansion Click to set LED pattern
	Click to set LED pattern
	you want to display.
radio send number 1	

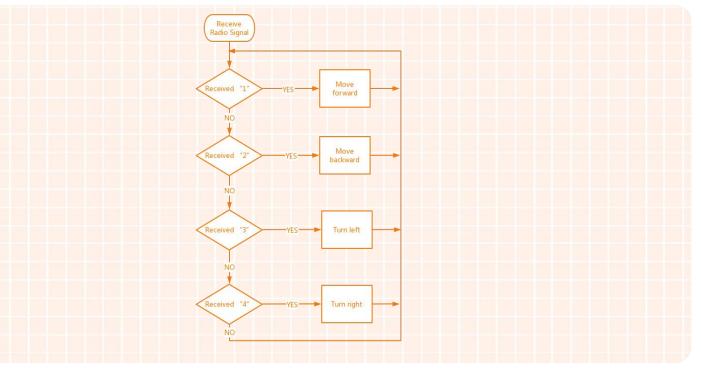
The programs for the rest actions of micro:bit works in the same way. (Note: The numbers in the "radio send number" block can't be the same.)

3. The whole program for the transmitting end is shown below:

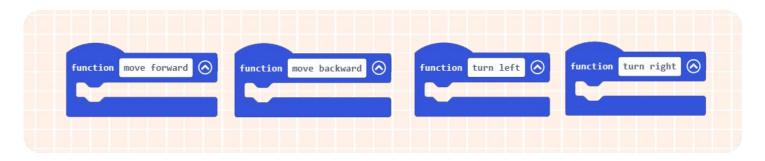
	on logo up 💌	on logo down 🔻
	show leds	show leds
on start		
radio set group 1	radio send number 1	radio send number 2
	on tilt left 💌	on tilt right 🔻
	show leds	show leds
	radio send number 3	radio send number 4

4. Name your project "Motion sensing robot-Transmitting end" and download it into the micro:bit of the transmitting end.

Motion Sensing- Receiving End: Step 1 Create a new project



Step 2 Programming


1. Enable radio communication function, and set the radio group to 1. (The radio group of the transmitting end should be the same as that of the receiving end.)

2. Program Maqueen Plus V2 to react according to the received signal.

3. Create four functions "move forward", "move backward", "Turn left", and "Turn right".

4. We have to use radio receive block to control the Maqueen Plus V2 to do different reactions according to the received data.

on radio received receivedNumber	on radio received receivedNumber
	if receivedNumber = 🔹 1 the
	call move forward
	\odot
	if receivedNumber = v 2 the
Drag the variable "receivedNumber" into the conditional blocks.	call move backward
5	•
on radio received receivedNumber	if receivedNumber = - 3 the
if receivedNumber = 1 then receivedNumber	call turn left
call move forward	•
\odot	if receivedNumber = - 4 the
	call turn right
	\odot

5. Take the function "move forward" as an example. When the Maqueen Plus V2 car moves forward, we let its LED screen display an "Up arrow".

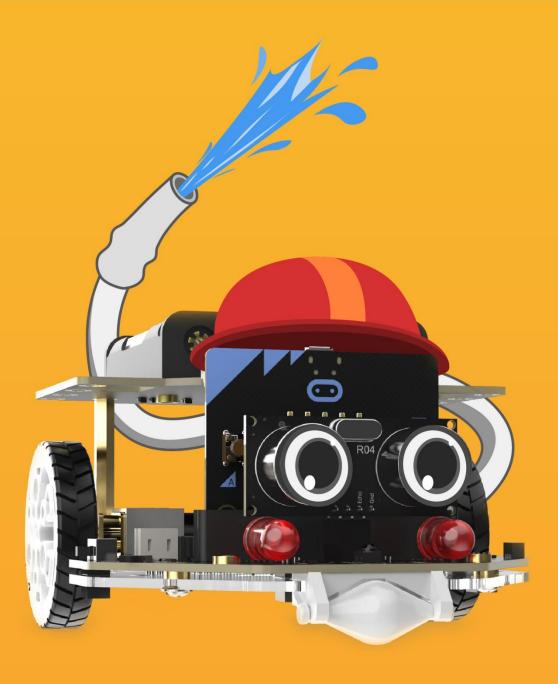
or direction r	rotate forward	• speed 1	00

Please complete the rest functions by yourself.

6. The program of the receiving end is shown below:

on start	function move forward	function turn left
radio set group 1	set all • motor direction rotate forward • speed 100	set left • motor direction rotate forward • speed
	show leds	set right ▼ motor direction rotate forward ▼ spee
on radio received receivedNumber		show leds
if receivedNumber = 1 then		
call move forward		
if receivedNumber = • 2 then		
call move backward		
•	function move backward	function turn right
if receivedNumber = v 3 then	set all • motor direction backward • speed 100	set left - motor direction rotate forward - spe
call turn left	show leds	
•		set right - motor direction rotate forward - sp
if receivedNumber = - 4 then		show leds
call turn right		
•		

7. Name your project "Motion sensing robot-Receiving end" and then download the program to the micro:bit in Maqueen Plus V2.

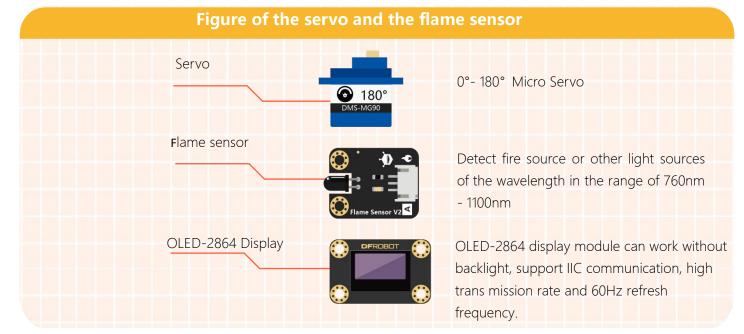

Effect Display

When completed all the above steps, turn Maqueen Plus V2's power switch on, then we can use the micro:bit of the transmitting end to control our car. Give it a go!

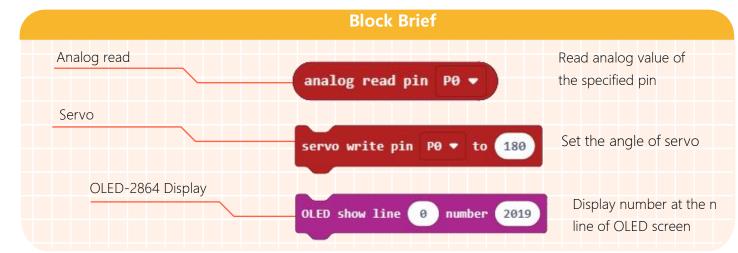
Think & Explore

When playing a motion-sensing game, the larger angle we turn, the larger angle the object moves on the screen. How do we achieve this on our Maqueen Plus V2?

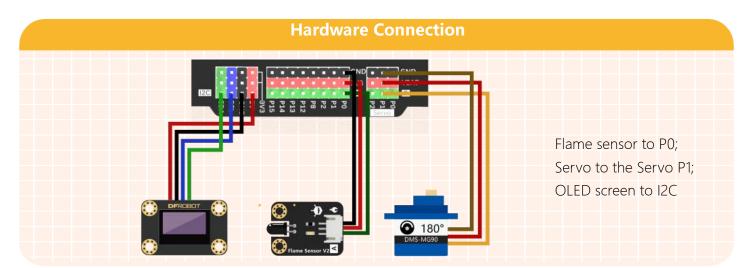
Chapter 13


Firefighting Robot

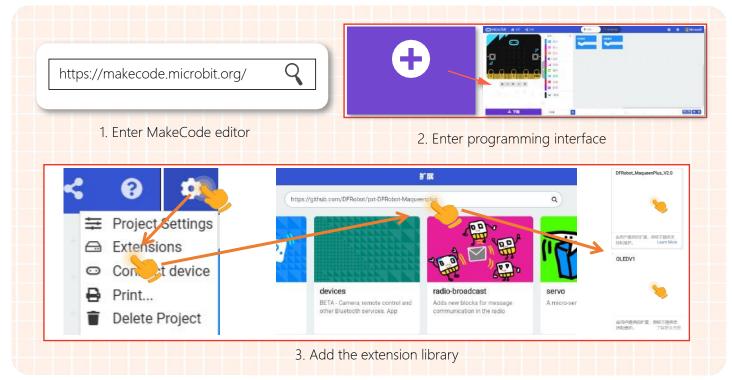
Firefighting is a highly dangerous occupation. When an emergency response call comes, firefighters must get themselves dressed in the appropriate gear and onto the emergency vehicles quickly to arrive at the fire scene, and then extinguish the fire. Firefighters are risking their lives to defend our cities and country. So everybody, can we use what we learned to help reduce the risk? How about a firefighting robot? Let's make a firefighting robot with Maqueen Plus V2, and let it complete three actions: Call out, Firefighting, and Mission done. A flame sensor and servo will be used in this project. Maqueen Plus V2 has 8 GPIO ports and 3 servo ports for connecting Gravity modules and servos. Everything is ready, let's start!


Goal

- 1. Learn how to drive a servo
- 2. Learn how to use a flame sensor
- 3. Learn how to use OLED display

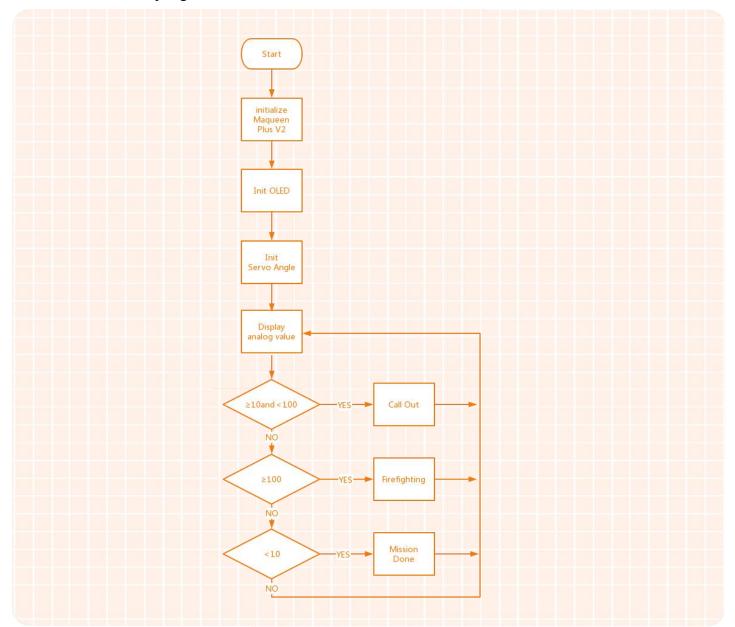

Electronic Component

Command Learning


Hands-on Practic

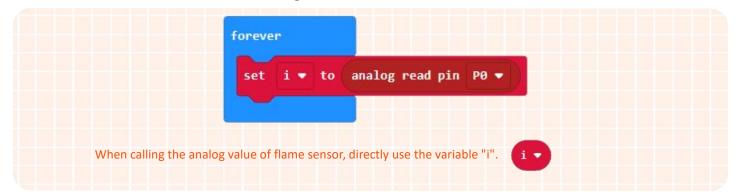

Step 1 Create a New Project

- 1. Input https://makecode.microbit.org/ into your browser to enter the MakeCode editor.
- 2. Click "new project" to enter the MakeCode programming interface.
- 3. Add the Maqueen Plus V2 library: https://github.com/DFRobot/pxt-DFRobot_MaqueenPlus_v20
- 4. Click "Setting"->"Extensions", input the following address and click the result OLEDV1: <u>https://github.com/DFRobot/pxt-OLED</u>


Step 2 Programming

- 1. Generally, there are three parts to the firefighting process.
- (1) Received the emergency call, and go to the fire scene;
- (2) Arrived at the scene, and extinguish the fire.
- (3) Mission completed.
- So, we will create three functions: "Call out", "Firefighting", and "Mission done". Take the first one as an example.

Create another two functions Firefighting and Mission done in the same way above.


2. Then do condition judgment as the flowchart shown below:

3. Initialize the Maqueen Plus V2 and OLED, and set the servo angle when the program starts.

4. Create a variable "i" to store the analog value read from the flame sensor.

5. Display the analog value of the flame sensor on the first line of the OLED screen.

forever
set i ▼ to analog read pin P0 ▼
OLED show line number 🚺 🔹

6. Call the related functions according to the program flowchart.

When the analog value detected by the flame sensor is between 10-100, it means that there is a certain distance between the firefighting robot and the fire scene, and the robot has to go forward to the scene; if the value is larger than 100, the robot has arrived at the fire scene, and starts to extinguish the fire; when it is less than 10, the firefighting mission is done.

forever
set i ▼ to analog read pin P0 ▼
OLED show line 0 number i -
if i ? ? 10 and • i • ? • 100 then
call Call out
if i v ≥ v 100 then
call Firefighting
if i v < v 10 then
call Mission done

7. The realization of the "Call out" function: when the firefighting robot drives to the fire scene, the two LEDs on the left and right will flash red alternatively, with the siren blaring (use the sound "dadadum" to simulate the siren).

function Call out
set all ▼ motor direction rotate forward ▼ speed 100
start melody dadadum 🕶 repeating forever 💌
control left 🕶 led light open 💌
pause (ms) 1000 -
control left 💌 led light close 💌
control right ▼ led light open ▼
pause (ms) 1000 -
control right ▼ led light close ▼

8. The realization of the function "Firefighting": when the firefighting robot arrived at the scene, turn on its fire hose to put out the fire (change the angle of the servo to simulate this process).

function Firefighting
set all 🕶 motor stop
servo write pin P1 - to 180

9. The function "Mission done": turn off the fire hose, LEDs, and siren.

function Mission done 🔗	
servo write pin P1 🔻 to 90	
control all • led light close •	
stop all sounds	

10. The complete program is shown below.

on start	function Call out 🔗
initialize via I2C until success	set all ▼ motor direction rotate forward ▼ speed
INIT_oled	start melody (dadadum 👻) repeating forever 💌
servo write pin P1 ▼ to 90	control left ▼ led light open ▼
	pause (ms) 1000 V
forever	control left • led light close •
set i ▼ to analog read pin P0 ▼	control right - led light open -
OLED show line 0 number i	pause (ms) 1000 🔻
if iv 2 v 10 and v iv (v 100 then	control right - led light close -
call Call out	
€	
if 2 • 100 then	
call Firefighting	function Mission done
€ function Firefighting ⊗	servo write pin P1 ▼ to 90
if (iv (v 10) then set all v motor stop	
call Mission done	
	stop all sounds

11. Name your project "Firefighting robot", and download it into Maqueen Plus V2.

Step 3 Effect Display

Turn on the power switch when completed all the steps above. Then the analog value from the flame sensor will be constantly displayed on the OLED screen. When the value is in 10-100, the firefighting robot moves forward at the speed of 100 with its light flashing and siren blaring; when it is more than 100, the robot car stops, and its servo rotates 180 degrees; when less than 10, the servo back to 90 degrees, stop playing sound and turn off the RGB LEDs.

Note: we can use a lighter to imitate the fire scene. Although the flame sensor can detect fire, it is not fireproof. Please make sure the sensor always keeps a certain distance from the fire. This project involves dangerous action, please complete this chapter with the assistance of guardians or teachers.

Think & Explore

We all know that smoking is not only harmful to our own health but effecting others. Therefore, smoking is forbidden in some public places. Can we make an "Anti-smoking robot" to monitor smoking in real-time? Tip: add a gas sensor based on this project.

Appendix 1. Maqueen Plus V2 Block Description & Program Links

Technically, Maqueen Plus V2 is a device and the block is the tool to operate it, just like a TV set and remote controller. So we have to use the following blocks to make our Maqueen Plus V2 "come alive". Let's get to know how these blocks work.

initialize via I2C until success	Initialize Maqueen Plus V2 to restore it to the default state
set left ▼ motor direction rotate forward ▼ speed	Set the direction and speed for "left/right/all" motor. Direction: forward, backward Speed: 0-255
set left ▼ motor stop	Stop the "left/right/all" motor.
control left • led light close •	Turn "left/right/all" LED ON or OFF. Color: red
read line sensor L1 - state	Read the value returned by line-tracking sensors "L1, L2, M, R1, and R2". Return value 1: detected black line. Return value 0: no black line detected
read line sensor L1 ▼ ADC data	Read the analog value returned by line-tracking sensors "L1, L2, M, R1, and R2"
set ultrasonic sensor TRIG pin P13 ♥ ECHO pin P14 ♥ read data comp	Detect the distance between the ultrasonic sensor and the obstacle ahead. TRIG: transmitting end; ECHO: receiving end. Set the GPIO port corresponding to TRIG & ECHO according to hardware connection.
set RGB brightness to 100	Set brightness of the RGB LED Brightness Range: 0-255

RGB show color red -	Set the display color of the RGB LED, 10 colors available.
RGB light 1 show color red •	Set the display color of the RGB LED 1, 2, 3 and 4, 10 colors available.
range from 1 with 4 leds	Set RGB LED number range LED Number: 1-4
red 100 green 100 blue 1	800 Set RGB(Red, Green, Blue) value Range: 0-255
set RGB show rainbow color from 1	Set RGB LED to display any color Range: 1-360
clear all RGB	Turn off all RGB LEDs
read version	Read the current version number of Maqueen Plus V2
read IR key value	Read the received IR signal Display the code value in decimal
on IR received message	The codes inside this block will run when IR receiver module received an external IR signal.

Program links for Maqueen Plus V2 Basic Tutorial

Chapter 2-Let's move, Maqueen !: https://makecode.microbit.org/_a0j7UdA8dHbo Chapter 3-Walking Emoji: https://makecode.microbit.org/_AgdcJu3uKJqU Chapter 4-City Defender-A Police Car: https://makecode.microbit.org/_V997HvFrcKm1 Chapter 5-Light Sensing Robot: https://makecode.microbit.org/_PA4XVHCPyVdL Chapter 6-Moth Robot: https://makecode.microbit.org/_RskYed68Y025 Chapter 7-Little Ranging Expert: https://makecode.microbit.org/_YXFM1sXVwTeu Chapter 8-Auto-braking System: https://makecode.microbit.org/_gcH2gf7YrDVC Chapter 9-Line-tracking Robot: https://makecode.microbit.org/_SzW0gjTe5Dcp Chapter 10-Tour of Crossroad: https://makecode.microbit.org/_9wg0fWLaciJo Chapter 11-IR-controlled Robot: https://makecode.microbit.org/_4t4KibbFU83r

Chapter 12-Motion Sensing Robot-Transmitting End: <u>https://makecode.microbit.org/_D2Eg5p2rv4K9</u>
Chapter 12-Motion Sensing Robot-Receiving End: https://makecode.microbit.org/ 6AcdRw2us2DY
Chapter 13-Firefighting Robot: https://makecode.microbit.org/ 3MKY9xe5H93P