

Users
Manual for IRLib.

A Library for Receiving, Decoding and Sending Infrared Signals Using
Arduino.

(Revised
June 2014)

 This
library is designed for using Arduino controllers for receiving, decoding and
sending infrared signals such as those used by infrared remotes on consumer
electronics. The work is based on earlier library called IRremote which was
created by Ken Shirriff. This library is a major rewrite of that system. The
original library defined only decoding and sending classes. The decoder class
included the code for receiving the raw signals and measuring time intervals in
them.

 In this
rewrite we separated the receiving from the decoding initially to make the code
easier to understand. Our thinking was that receiving portion of the code was extremely
hardware oriented and required knowledge of hardware interrupts, hardware times
and other technical issues. Whereas the decoding portion of the process dealt
with protocols used by IR devices. It was more likely that users want to
implement new protocols and they would not want to have to deal with the
technical details.

 Overall I
wanted to take a “black box” approach that would isolate as many of the
internal details as possible so that the end-user did not have to deal with
them. The separation of receiving and decoding also allowed for the possibility
that the receiver could be reset to receive another sequence of signals while
the decoding process was going on (although decoding is not generally very time
intensive). This design decision to split receiving from decoding also
facilitated the later decision in version 1.3 of the library to implement other
methods of receiving signals.

 This manual
is divided into three major sections. First is a complete reference of all the
classes, structures and methods included in the library. The reference section
is designed for those who want to make maximum use of the facilities of the
library. However you may not need to understand everything in this section in
order to use it. We suggest that novices proceed to part two which is the
tutorials section. There you will find some examples of the basic use of the
library. Finally you can move on to the third section of this documentation
which explains how to add additional protocols to the decoding and sending
sections.

 Note also
that the code is well documented and skilled programmers who are familiar with
infrared protocols and Arduino hardware or anyone interested should simply
browse through the code itself for useful information.

1. IRLib Reference

 This
section is intended to be a complete reference to the classes, methods, and
structures used in the library. It is divided into three sections: the receiver
classes, the decoder classes, and the sending classes.

1.1 Receiver
Classes

IR data is
received on an input pin of the Arduino as a square wave of pulses of varying
lengths. The length of the on and off pulses encodes the data. It is the job of
the receiver class to record the timing of the pulses in the spaces between in
an array and pass that information to the decoder class. This section contains
an overview discussion of the receiving process, with an explanation of the
base receiver class and three derived classes each with its own unique
characteristics. In addition to the receiver classes which record basic pulse
widths, there is a new additional receiver class for measuring the modulation
frequency of an IR signal.

1.1.1 Receiver Overview

 Infrared
signals are received by an IR receiver device such as the first TSOP4438 or
TSO58438 or similar. See the Hardware Considerations section for details.
Although IR signals are sent as a series of modulated pulses, these receivers
filter out the modulations and send you a signal in the form of a clean square
wave. The output of the receiver is connected to one of the digital input pins
of your Arduino. It is the job the receiver class to monitor this signal and to
determine the length of the pulses known as “marks” in the length of the
intervening idle periods known as “spaces”. The hardware receiver devices typically
are normally high and the low when a signal is received. However the code
compensates for this sort is useful to think of a “mark” as being “on” and a
“space” as being “off”.

The duration of marks and spaces is
measured in microseconds (1/1,000,000 of a second). Note however that the
software makes use of the built-in Arduino function “micros(void)” which
returns results in four microssecond granularity. Which means that values are
always a multiple of four. This is for typical 16 MHz clocks on most Arduino
models. On 8 MHz models results are in eight microsecond granularity. So
whatever results we achieve are going to be no more accurate than that.

 The
receiver software is organized as a base class which of itself is not
functional but contains methods which are common to all of the classes. The
classes are:

·
IRrecvBase Abstract
base class

·
IRrecv Original
receiver class which uses 50 µs interrupt sampling

·
IRrecvPCI Uses
pin change interrupts to measure pulse duration

·
IRrecvLoop Uses
a tight code loop to poll the input pin

 The data is
stored in an array of unsigned int values. The first element of the array is
the number of microseconds from the time the receiver is enabled until the time
the first mark is received. This gap is typically discarded by the decoding
routines. From there on, odd-numbered elements of the array contain the
duration of the marks and even-numbered elements contain the duration of the
spaces.

 Most of the
receiver classes are interrupt driven which means once they are initialized you
can go off and do whatever you want until a complete sequence has been
received. You determine when the sequence is complete by polling the method
GetResults and when it returns true you can then obtain the results. Once a
complete sequence has been received, the receiver class ignores any subsequent
signals until it is reinitialized by you. However the IRrecvLoop is not
interrupt driven and so when you call GetResults it sits in a tight loop and
does not release control back to you until the complete signal has been
received.

 Although
the library implements three different extensions to the base receiver class,
you should have one and only one instance of a receiver class in your program
because all the classes make use of global data and methods that are common to
all of the classes. The data must be declared globally in the library because
it is accessed by interrupt service routines. The structure of an interrupt
service routines does not allow for the passing of any parameters. Therefore any
data that the ISR accesses must be global.

 You should
read the next section about the base class because most of the methods work
identically regardless of which derived class you actually instantiate. You
should then read the section on the class which you are going to use so that
you will understand the class specific issues.

 Here is an
extremely simple sample sketch showing the use of the IRrecv class. Either of
the other two classes could be substituted in this example. You may wish to
refer to this sample code while reading the description of the methods.

#include <IRLib.h>

IRdecode My_Decoder;

IRrecv My_Receiver(11); //Create the receiver. Use pin 11

void setup()

{

 Serial.begin(9600);

My_Receiver.enableIRIn();//start receiving

}

void loop() {

 if (My_Receiver.GetResults(&My_Decoder))
{//wait till it returns true

 My_Decoder.decode();

My_Decoder.DumpResults();

 My_Receiver.resume(); //restart the receiver

 }

}

1.1.2. The IRrecvBase class

 This base
class is an abstract class which in and of itself is not functional but
contains common code for the other receiver classes. The prototype of the class
is in “IRLib.h” and the code is implemented in “IRLib.cpp”. The prototype is…

class IRrecvBase

{

public:

 IRrecvBase(void) {};

 IRrecvBase(unsigned char
recvpin);

 void No_Output(void);

 void blink13(bool
blinkflag);

 bool
GetResults(IRdecodeBase *decoder, const unsigned int Time_per_Ticks=1);

 void enableIRIn(void);

 virtual void
resume(void);

 unsigned char
getPinNum(void);

 unsigned char
Mark_Excess;

protected:

 void Init(void);

};

The constructor is

 IRrecvBase(unsigned char
recvpin);

 The value
passed is usually the pin number to which the receiver is connected. Although
the single parameter is called “recvpin”, in the case of the IRrecvPCI class,
the value passed constructor is not the receiver pin number but is the
interrupt number. See IRrcevPCI for details.

 Creating an
instance of the receiver class does not enable the receiving of data. You must
enable the receiver by calling

void enableIRIn(void)

This method sets the input pin to
input mode and resets the index into the array of data values to zero. On the
interrupt driven classes this enables interrupts and the receiver starts
recording intervals. However when using the IRrecvLoop class, recording of
signals does not begin until you call GetResults.

If you are only receiving signals
in your program, you need only call this method one time. However if your
program sends and receives IR signals, it cannot do both simultaneously. The
sending of an IR signal disables the receiver. After you have sent a code you
must reenable the receiver class using enableIRIn().

Once the receiver is running you
then need to poll the class to see if a complete sequence has been received.
You do this by repeatedly calling…

bool GetResults(IRdecodeBase *decoder,

 const unsigned int Time_per_Ticks=1);

 This method
will return “true” when a complete sequence has been received and will return
“false” otherwise. The first parameter is a pointer to a decoder class. This
facilitates passing data from the receiver to the decoder.

 The second
parameter is optional. Is a multiplier which converts the recorded data into
microseconds. The IRrecv class produces results in 50 µs ticks. It passes the
number 50 as the second parameter so that GetResults will multiply the values
in the array by 50 to convert them into actual microseconds. The other two
receiver classes use the default multiplier 1 because they record actual
microseconds do not need converting.

This method passes data into your
decoder class. You can configure your decoder to use the same global array that
is used by the receiver classes or your decoder can define its own extra buffer
in which case the interval data is copied from the receiver’s array to the
decoder’s array. The method also passes the index of the last array element
used.

When a complete sequence has been
received by the class it does not continue recording signals. It also does not
resume recording once you have called GetResults because your decoder may be
using the same array as the receiver and you do not want the receiver
overwriting the array before you get it decoded.

To resume receiving data you must
call the method…

virtual void resume(void);

 That method
is declared “virtual” because it is called by the IRrecvBase::enableIRIn method
in the derived classes. This allows the derived classes to do things they need
to do for themselves when resume is called.

 In summary,
you would typically call enableIRIn once at the beginning of your program and
if your program uses the send classes you would need to use it after each
sending of an IR signal. You would use “resume()” to resume reception after
decoding or immediately after GetResults if your decoder uses its own array. You
need not call “resume()” if you have called “enableIRIn()” because it will call
it for you.

 The
remaining methods are not essential to the operation of the receiver but are
useful.

For debugging purposes you may want
to know if your Arduino is receiving a signal. If you initially call

void blink13(true)

 Pin 13 will
be blinked on every time a mark is received and blinked off when a space is
received. The default is off and blinking will not occur.

 Some users
create custom boards for input and output of IR signals and those boards are
connected to their Arduino even in the case where there really a sketch that
only does input. It is theoretically possible that when running an “input only”
sketch that the output pin could initialize high and your output LED would be
on all the time. LED driver circuits are sometimes designed to overdrive the
LED because it is used only intermittently. If it were to be accidentally left
on continuously, it could burn out your circuit. If you want to ensure that
this does not happen you can call.

void No_Output(void);

 This will
ensure that your output pin is set low. Note that in this library the output
pin is determined at the time that the library is compiled and is based on the
choice of internal hardware timer in the “IRLibTimer.h” file. That is why the
receiver team can know what output pin to drive low.

 As noted
earlier, the constructor for IRrecvPCI is passed an interrupt number rather
than a pin number. The pin number is computed based upon the type of hardware
you are using and interrupt chosen. You can return the value of this pin number
using…

unsigned char getPinNum(void);

 This method
also works for the other receiver classes although you probably already know
which pin you are using because you sent it that information in the
constructor.

 Depending
on the type of IR receiver hardware you are using, the length of a mark pulse
is over reported and the length of a space is underreported. Based on tests
performed by Ken Shirriff who wrote the original IRremote library upon which
this library is based, the length of a received mark is about 100µs too long and
a space is 100µs too short. That is the default value used by the receiver
classes. However my own experience is that 50µs is a better value. In order to
maintain backwards compatibility with earlier versions of the library we have
maintained the 100µs default however you can now change that value based on
your own experiences by changing the value of

unsigned char Mark_Excess;

 You can
examine or change this variable as desired. It is applied by adding that value
to all odd-numbered elements of the interval array and is subtracted from
even-numbered elements when the data is passed to your decoder by GetResults.

 There is
one protected method which is used for internal use.

void Init(void);

 Is called
by the constructors and it initializes the blink flag and the default mark
excess values. There is also a global function used by the receiver class.

void do_Blink(void);

 This
performs the actual blinking of pin 13. It cannot be a method of this class
because it is called from within an interrupt service routine. This function is
used internally only.

1.1.3. IRrecv Class

This receiver class is based on the
original receiver created by Ken Shirriff in his library IRremote upon which
this library is based. It uses a hardware timer to trigger an interrupt every
50µs. Inside the interrupt routine it counts the number of these 50µs ticks
while the pin is a mark and when the state changes it counts how many ticks in
the space. When it receives an extraordinarily long space it presumes that the
sequence has ended. It sets an internal flag noting that the sequence has been
received. It stops recording time intervals and when the user calls GetResults
the next time it will return true.

The internal hardware timer used is
controlled by settings in the “IRLibTimer.h” file. Each type of Arduino
platform such as Arduino Uno, Leonardo, Mega etc. has a choice of different
timers. For example the Uno uses TIMER2 while the Leonardo uses TIMER1. You may
need to change the default timer in the event of a conflict with some other
library. For example the Servo library makes use of TIMER1 so if you’re using a
Leonardo with a servo you would need to change the value in “IRLibTimer.h” to
use a different timer.

The prototype of the class is in
“IRLib.h” and the code is implemented in “IRLib.cpp”. The prototype is…

class IRrecv: public IRrecvBase

{

public:

 IRrecv(unsigned char
recvpin):IRrecvBase(recvpin){};

 bool
GetResults(IRdecodeBase *decoder);

 void enableIRIn(void);

 void resume(void);

};

 As
previously noted in the discussion of the base class, the constructor is passed
the pin number of the input pin to which you have connected your receiver.
There are no restrictions and any digital input pin can be used.

 Note that
when calling GetResults you only use the first parameter which is a pointer to
your decoder class. Although the prototype only lists the constructor and three
other methods, all of the methods available to the base class are available in
this class.

 You will
need to enable input by calling enableIRIn() and will need to poll the
GetResults method in your loop until it turns true. Although in our example
code we called GetResults in a very small loop, because this class is interrupt
driven you can do just about anything else inside your main loop function and
only call GetResults when you are ready.

 A reminder that
when a complete stream has been received, no additional measurements are taken
until you call the “resume()” method. If your decoder does not use its own
buffer and relies upon the global buffer for the library, be sure not to call
resume until your decoding is complete when you no longer have need of the
buffer.

 Because the
interrupt service routine for this class must be declared globally, it is
always created even if you do not use the IRrecv class. If you are using a
timer interrupt for some other purpose, it can create a conflict because there
are duplicate ISR functions declared. There is a conditional compile flag
available in IRLib.h that effectively removes this entire class and the ISR
from the library. If you need to remove the class you should comment out the
line that reads

#define USE_IRRECV

 There is no
similar define to disable IRrecvPCI or IRfrequency classes because they use a
different type of ISR with a unique name that will not conflict with other
libraries or code. Also the IRrecvLoop is not interrupt driven so it will never
conflict and does not need to be disabled.

 Because
this receiver only samples the input every 50µs there is a chance that it could
sample at inopportune times and be as much as 98µs off when measuring intervals.
If you are decoding a known protocol, this margin of error is usually
acceptable. The decoder functions typically use +/-25% tolerance and that
produces acceptable results. However if you are trying to analyze an unknown
protocol you would be better suited to use either the IRrecvPCI or IRrecvLoop
receiver class instead.

1.1.4. IRrecvPCI Class

This receiver class makes use of
the hardware interrupt available on some pins of Arduino microcontrollers. It
was created because it gives more accurate timings than the original IRrecv
class which only samples the input every 50µs. The code is loosely based upon and
inspired by the work by the developers of the AnalysIR program. AnalysIR is a
Windows-based application which allows you to graphically analyze IR input
signals through and Arduino, Raspberry Pi or other microcontrollers systems.
Many thanks to the developers of that software for their assistance and input
into the development of this class. You can find more about their software at http://analysir.com

The class sets up the pin change
hardware interrupt which calls the interrupt service routine every time the
input pin switches from low to high or high to low. At each change, the code
calls the built in function “micros()” and that value is subtracted from the
timestamp of the previous change. Because the micros() function is only accurate
to 4µs on 16 MHz systems or 8µs on 8 MHz systems, that is the limitation of
accuracy of this method.

While it is much more accurate than
the original IRrecv class which only had 50µs or worse accuracy, it may not be
suitable for everyday use. The class has difficulty determining when a sequence
has ended. Normally we assume a sequence has ended when a space interval is
longer than a certain amount. But we cannot know how long the final trailing
space is until the first mark of the next sequence begins. The code attempts to
compensate for this by checking for an extremely long space each time that the
user calls GetResults. However unless you call that routine extremely
frequently, it is more likely that the next sequence will begin. While that does
not adversely affect the reception and subsequent decoding of an initial
sequence, if the next sequence comes quickly then the receiver may miss it or
may start reception in the middle of a sequence thus giving only partial
therefore jumbled results. To avoid this problem we suggest that you not resume
the receiver immediately but instead put a “delay(500);” or longer statement
after you have finished decoding.

Although this class does not use
internal hardware timers, it is still recommended that you call “enableIRIn()”
after using any sender routines.

As with the IRrecv class, the
interrupt service routine is disabled once a completed sequence has been
detected and is not re-enabled until you call either “enableIRIn()” or
“resume()”.

The prototype of the class is in
“IRLib.h” and the code is implemented in “IRLib.cpp”. The prototype is…

class IRrecvPCI: public IRrecvBase

{

public:

 IRrecvPCI(unsigned char
inum);

 bool
GetResults(IRdecodeBase *decoder);

 void resume(void);

private:

 unsigned char intrnum;

};

 Note that
the parameter passed to the constructor is an interrupt number and not a pin
number. The value you specify is passed to the built in “attachInterrupt()”
function. The table below shows which interrupts are available on various types
of Arduino hardware and the resulting pin numbers used by those interrupts. NOTE: these interrupt numbers which are
passed to “attachInterrupt()” are not necessarily identical to the interrupt
numbers in the datasheet of the processor chip you are using. These interrupt
numbers are a system unique to the “attachInterrupt()” Arduino function.
For more information on attachInterrupt see http://arduino.cc/en/Reference/AttachInterrupt

 	
 Board

 	
 int.0

 	
 int.1

 	
 int.2

 	
 int.3

 	
 int.4

 	
 int.5

 	
 Int.6

 	
 Uno, Ethernet

 	
 2

 	
 3

 	
 	
 	
 	
 	

 	
 Mega2560

 	
 2

 	
 3

 	
 21

 	
 20

 	
 19

 	
 18

 	

 	
 Pinoccio

 	
 4

 	
 5

 	
 SCL(15)

 	
 SDA(16)

 	
 RX1(13)

 	
 TX1(14)

 	
 7

 	
 Leonardo

 	
 3

 	
 2

 	
 0

 	
 1

 	
 7

 	
 	

 	
 Due

 	
 (see below)

The Arduino Due board has powerful interrupt capabilities that allow you to
attach an interrupt function on any available pins. This library has not been
tested using this platform but theoretically should work.

Note this table is also used by the IRfrequency class and is implemented by
the following global function which is implemented in IRLib.cpp and whose
prototype is in IRLib.h..

unsigned char Pin_from_Intr(unsigned
char inum);

The constructor takes the interrupt number which you pass and computes the
pin number. If you wish to verify which pin number it has chosen based on your
interrupt you can use the getPinNum() function to make sure that the hardware
detection is working properly.

Although the prototype of this class only lists 2 methods, all of the
methods of the base class are available.

1.1.5. IRrecvLoop Class

This version of the receiver class uses a tight internal loop to poll the
input pin. It makes no use of hardware interrupts or internal timers to compute
the intervals. It does use the “micros()” function to compute time intervals so
it has the limitations of that function. Specifically the function is
only accurate to 4µs on 16 MHz systems or 8µs on 8 MHz systems. Although we
have attempted code the loop as tightly as possible there still is some amount
of overhead in the loop itself which could affect the accuracy. However it is
still much more accurate than the 50µs off the original IRrecv. This makes it a
good choice for analyzing unknown protocols.

Because no interrupts are involved,
the class does not begin recording intervals when you initially call
“enableIRIn()” as is the case with other classes. This class only samples input
when you call GetResults. That method then takes over control of your program
and does not relinquish it until it has received a complete sequence. The
function always returns true. Because it takes over control of your program and
does not allow you to do other things while it is looking for a sequence, this
version of the class may not be practical for everyday use.

It is still recommended that you
follow all of the procedures for when to call enableIRIn() and or resume()
methods as you would with other versions of the class.

The prototype of the class is in
“IRLib.h” and the code is implemented in “IRLib.cpp”. The prototype is…

class IRrecvLoop: public IRrecvBase

{

public:

 IRrecvLoop(unsigned char
recvpin):IRrecvBase(recvpin){};

 bool
GetResults(IRdecodeBase *decoder);

};

 Although
the prototype only lists the constructor and GetResults, all of the methods of
the base class are available. Like IRrecv, the value passed to the constructor
is the number of the receiver pin. Any available digital input pin can be used.

1.1.6. Global Receiver Structures

 In addition
to the base class and the three derived classes that are used for receiving IR
signals, there is a globally defined structure that is used by the classes.
Good object-oriented design would have us put all of the data associated with a
class inside the class itself. However much of the data we use needs to be
accessible from an interrupt service routine. A limitation of an ISR is that we
cannot pass it any parameters and it cannot be part of a class. So all of the
data used by the ISR must be in some globally available location. Unless you’re
going to implement your own receiver class or create custom decoder classes
need access to this data, you need not deal with the structure. It is solely
for internal use. The file “IRLibRData.h” contains the following definitions

enum rcvstate_t {STATE_UNKNOWN, STATE_IDLE, STATE_MARK,
STATE_SPACE, STATE_STOP, STATE_RUNNING};

typedef struct {

 unsigned char
recvpin; // pin for IR data from
detector

 rcvstate_t rcvstate; // state machine

 bool blinkflag; // TRUE to enable blinking of pin 13
on IR processing

 unsigned long timer; // state timer, counts 50uS ticks.(and
other uses)

 unsigned int
rawbuf[RAWBUF]; // raw data

 unsigned char rawlen; // counter of entries in rawbuf

}

irparams_t;

extern volatile irparams_t irparams;

 The enum
values are the “states” in which the interrupt service routine keeps track of
the receiving process. They are used by IRrecv and IRrecvPCI.

 The structure
called irparams gives Jack of the input pin, the state of the receiver, the
flag used by the pin 13 blinker, a variable to count the number of ticks in the
interval, the array which contains the length of sequence of marks and spaces
and the index into that array which will contain the length of the sequence
when it is complete.

 Note that
the entire structure is declared “volatile” which informs the compiler to
always immediately store results in their location and immediately retrieve
them when needed because they may get changed by the ISR in the middle of the
calculation.

 The decoder
class contains a pointer to an array. The default is that that pointer is
initialized to “irparams.rawbuf” which is the same array used by the receiver
class. You have the option to define your own array for use by the decoder by
changing that pointer to a different array. The receiver method GetResults will
copy the values either to itself if you did not specify a different array or it
will copy the results to your array if you have changed that pointer. See the
section on IRdecodeBase::UseExtnBuf(void *P); for details. The GetResults
method also copies rawlen to a similarly named variable in the decoder class.

1.1.7 IRfrequency Class

 Normally
you would use a TSOPxxxx IR receiver device to detect IR signals. These devices
demodulate the signal into square waves measured in hundreds or thousands of
microseconds. However the actual IR signals are modulated at frequencies from
36 kHz as high as 57 kHz depending on the protocol. If you have an unknown
protocol, you can typically receive such a signal using a device that has been
tuned to 38 kHz however if you then want to accurately retransmit the signal
you need to know the actual frequency. This requires a different type of receiver
such as a TSMP58000 that passes the modulated signal through directly. See the
section Hardware Considerations for more info on connecting these devices.

 Because the
signals are so short (17.5 µs to 27.7 µs) it is difficult to accurately measure
them. The only way is to use a hardware interrupt pin and an extremely fast
interrupt service routine. However these measurements are limited to the
accuracy of the micros() function which is only accurate to 4 µs on 16 MHz
systems and 8 µs µs on 8 MHz systems. The accuracy of the measurement can be
slightly improved by taking several hundred measurements and averaging them.

The IRfrequency class implements an
interrupt driven system for measuring frequency. See the examples folder for sample code using this class. The
IRrecvDumpFreq example requires both a TSOP and TSMP device connected to 2
different pins. It detects both the frequency using IRfrequency and the pattern
of pulses using IRrecvPCI or IRecvLoop receivers. You could also use the
original IRrecv receiver class but it degrades the accuracy of the frequency
calculation because the interrupt every 50 µs interferes. The other sample code
is IRfreq and it uses only the TSMP device to measure frequency and it does
nothing else. Measuring frequency by itself is the most accurate method but
there may be applications where you need to measure frequency and protocol
simultaneously.

The prototype of the class is in
“IRLib.h” and the code is implemented in “IRLib.cpp”. The prototype is…

class IRfrequency

{

public:

 //Note this is interrupt
number, not pin number

 IRfrequency(unsigned char
inum);

 void
enableFreqDetect(void);

 bool HaveData(void); //detective data received

 void
disableFreqDetect(void);

 void ComputeFreq(void); //computes but does not print results

 void DumpResults(void); //computes and prints results

 unsigned char
getPinNum(void);//get value computed from interrupt number

 double Results; //results
in kHz

 unsigned char Samples;
//number of samples used in computation

private:

 volatile unsigned char
Time_Stamp[256];

 unsigned char intrnum,
index, pin;

 unsigned long Sum;

};

The parameter to the constructor is
the interrupt number you will use for detecting the frequency. Note this is the
same system of interrupt numbers used by the IRrecvPCI class. It is not the
actual pin number for connecting the device. See the table in the section on
IRrecvPCI. You can also use the getPinNum() method to retrieve the pin number
once the class has been created. Note that although some of the methods of this
class have the same name as the IRrecvBase class, it is not a derived class
from that base. As with other receiver classes, you should instantiate only one
copy of this class.

 The class
does not begin collecting frequency data until you call enableFreqDetect()
method. This attaches the interrupt routine and begins waiting for a signal. The
built in interrupt service routine calls micros() each time a signal is
detected. It stores the least significant byte of that value in a 256 byte array.
It continually detects data in the array and when it fills, the index wraps
around. This overflow is very likely to occur because an IR stream will usually
contain thousands of pulses. Therefore the measurement is only based upon the
most recent 256 data points.

 If you are
simultaneously receiving a signal using a TSOPxxxx device and one of the three
available receiver classes as in the IRrecvDumpFreq example, you can continue
to operate the frequency detector until a complete sequence has been detected.
However if you are measuring frequency alone as with the IRfreq example, you
need to know when to quit. You can call the HaveData() method repeatedly in
your main loop. It will return true if at least one buffer full of data has
been collected.

 When you
are finished collecting data, you should call the disableFreqDetect() method.
This will detach the interrupt and no further data is collected until you call
enableFreqDetect() again. You then have a choice of either calling ComputeFreq
which computes the frequency based on the timestamp data or DumpResults which
will call ComputeFreq for you and display the results using Serial.print().

 The
computation measures the difference between successive timestamps. While the
majority of the timestamps will be the time between pulses of the modulated
signal, some of them will be the gaps caused by the spaces in the protocol.
These gaps will be on the order of hundreds of microseconds rather than tens of
microseconds. The computation discards these intervals and only considers those
which are likely to be from the modulated signal itself. Because we’re only
storing the least significant byte of data, some of the values will be
inaccurate. The code attempts to eliminate anything that is unusually large or
unusually small. It then averages the usable samples and computes a frequency
measured in kHz. ComputeFreq stores the results in a float double value
Results. It also tells you the number of actual samples used in the computation
in the unsigned char Samples. If the Samples value is extremely small, you
might wish to discard that data and remeasure.

 The text
strings of the DumpResults method are stored in program memory rather than RAM
memory. However if you are not using the DumpResults method and you are running
out of program memory may wish to disable this function. In IRLib.h there is a
define

#define USE_DUMP

 You can
comment out that line was to save program memory. Note that this parameter also
affects the DumpResults method of the decoder classes as well.

1.2 Decoder Classes

 IR signals
are encoded as a stream of on and off pulses of varying lengths. The receiver
classes only record the length of pulses which we call “marks” and the
intervals between them which we call “spaces”. However it is the decoder class
which identifies the protocol used and extracts the data. It provides the user
with the type of protocol it found if any, the value received, and the number
of bits in that value. We implement the decoder as an abstract base class and
nine additional derived classes. Seven of the classes are for the seven
protocols which are built into the library. An eighth class consolidates the
seven other classes into one omnibus class that decodes all seven protocols. A
ninth class turned the data into a 32-bit hash code which can be used for
deriving a value for data from an unknown protocol. Note however that the hash
code is only good for detecting signals and cannot be used to re-create the
signals for sending again.

 Note:
additional protocols are demonstrated in various example sketches provided with
this library. These examples illustrate how to extend the library using
object-oriented programming techniques without having to recompile it. It will
be our policy for the foreseeable future not to directly add additional
protocols to the library but to implement future protocols as example sketches.
We will not accept any pull requests which add additional protocols to the main
library. We will also not accept additional examples which do not implement
both sending and decoding classes.

1.2.1. Decoding Overview

 The data
from the receiver class is in the form of an array of time intervals of the
marks and spaces that constitute the data stream. That stream typically begins
with some sort of header followed by the encoded bits of data which could be
from 8 up to 32 or more bits followed by some trailer. Occasionally there are
other sequences in the middle of the stream that are not actually part of the
data that serve to separate the data into different sections. In order to make
good use of the information we need a decoder which will take this data and
convert it into a single binary value which identifies the particular function
the remote is using.

 The data
sent by a remote often contains information such as a device
number,-sub-device, function number, sub-function and occasionally information
that designates that this is a repeated signal. The philosophy of this library
is to not care about what the data represents. We take the philosophy that “You
push the button and this is the stream of data that you get.” Our job is to get
you that binary number usually expressed in hexadecimal and it’s up to you to
decide what to do with it.

 If you are
using a supported protocol, that hexadecimal number can then be fed into a send
class which will output the IR signal identical to the one that you received.
There is one exception in that one of the decoders used for unknown protocols
creates a 32-bit hash code from the input sequence. The hash code is extremely
likely to be a unique representation of the original stream but there is no way
to reverse that and re-create the stream from the hash code.

 Different
manufacturers use different protocols for encoding this data. That is what
allows you to have a universal remote that can operate devices by different
manufacturers and not have the signals get mixed up. That creates a problem for
us because we need different programs to decode each different protocol. This
library supports seven of the most common protocols. The example programs
included with the library show how to decode and encode a number of additional
protocols. We have seen references online to dozens of others which we do not
support yet.

 The library
has a base decoder class and 10 additional extended classes. Seven of those
classes are for the seven protocols we support directly. An eighth class
creates a hash code out of that raw data which can turn the data into a unique
binary number. Note that the hash code cannot then be used to re-create the
original sequence for sending the data out again. The ninth class is an
abstract class which defines common methods used by both RC5 and RC6 protocols.
Finally, the tenth class combines the seven supported protocols into a single
decoder.

1.2.2. IRdecodeBase Class

 The library
defines a base decoding class that is an abstract class which does not in and
of itself do anything. All other decoder classes are extensions of this class.
The prototype is in “IRLib.h’ and the code itself is in “IRLib.cpp”. The
prototype for the class is…

typedef char IRTYPES; //formerly was an enum

class IRdecodeBase

{

public:

 IRdecodeBase(void);

 IRTYPES decode_type; //
NEC, SONY, RC5, UNKNOWN etc.

 unsigned long value; //
Decoded value

 unsigned char bits; //
Number of bits in decoded value

 volatile unsigned int
*rawbuf; // Raw intervals in
microseconds

 unsigned char
rawlen; // Number of records in rawbuf.

 bool IgnoreHeader; // Relaxed header detection allows
AGC to settle

 virtual void
Reset(void); // Initializes the decoder

 virtual bool
decode(void); // This base routine always returns

// false override with
your routine

 bool
decodeGeneric(unsigned char Raw_Count, unsigned int Head_Mark,

unsigned int
Head_Space, unsigned int Mark_One,

unsigned int Mark_Zero, unsigned int
Space_One,

unsigned int Space_Zero);

 virtual void DumpResults
(void);

 void UseExtnBuf(void *P);
 //Normally uses same rawbuf as IRrecv.

//Use this to define
your own buffer.

 void copyBuf (IRdecodeBase
*source); //copies rawbuf and rawlen
from

//one decoder to
another

protected:

 unsigned char index; // Index into rawbuf used various
places

};

 The
constructors for the base class and for any of its derived classes take no
input. Unlike the receiver classes there is no problem creating an instance of
multiple decoder objects because each has its own internal data associated with
it.

 Data is
passed from the receiver class to the decoder class when you call GetResults
and pass it a pointer to your decoder. Get Results starts by calling your
decoders “Reset()” method to clear out any previous data. It resets the
decode_type to UNKNOWN and zeros out other values. It then copies the interval
timing data into the array rawbuf and sets rawlen to the index of the last
array element used. It is unlikely you would ever have need to call the Reset()
method yourself but it is available if you need it.

 User should
then call the “decode()” method. It will analyze the raw data and if it is a
recognized protocol it will set the “decode_type” value as one of the following
values found in IRLib.h.

#define UNKNOWN 0

#define NEC 1

#define SONY 2

#define RC5 3

#define RC6 4

#define PANASONIC_OLD 5

#define JVC 6

#define NECX 7

#define HASH_CODE 8

#define LAST_PROTOCOL HASH_CODE

 That
“decode()” method also sets “value” to the binary value it decoded and sets
“bits” to the number of bits of data. Most protocols have a fixed number of
bits but some protocols such as Sony have different versions of the same
protocol using different numbers of bits.

 The method
“DumpResults()” can be called after “decode()” to dump information about the
received data to the serial monitor. You will have had to initialize serial
output using “Serial.begin (int)” prior to calling it. Here is an example of
typical data output by this method

Decoded Sony(2): Value:74BCA (20 bits)

Raw samples(42): Gap:11950

 Head: m2300 s700

0:m550 s600 1:m1200 s600 2:m1150 s650 3:m1150 s600

4:m600 s600 5:m1150 s650 6:m600 s600 7:m550 s600

8:m1200 s600 9:m550
s650 10:m1150 s650 11:m1150 s600

12:m1150 s650 13:m1100
s650 14:m600 s600 15:m600 s600

16:m1150 s650 17:m550
s650 18:m1150 s600 19:m550

Extent=32650

Mark min:550 max:1200

Space min:600 max:650

 The output
identifies this a Sony protocol which is protocol “2”. The received value in
hexadecimal is 0x74BCA and is 20 bits long. The stream contained 42 intervals
(that is the value rawlen). It then dumps out all of the values from rawbuf.
The first element of that array is the amount of time between initializing of
the receiver and the first received mark. This gap is ignored by the decoder.
The next two values are the length of the mark and space of the header
sequence. The remaining values are the lengths of the marks and spaces of the
data bits. Each mark is preceded by the letter “m” and spaces are “s”. The
values are in microseconds. Because we used the IRrecv receiver you will note
that all of the values are in 50µs increments.

 At the end
of the data bits, the method also reports the sum total of all of the intervals
from the header through the stop bit. That information is significant for some
protocols. It also tells you the maximum and minimum values of mark and space
for data bits which can be useful for analyzing unknown protocols. Additional
data analysis of unknown protocols can be found in the IRanalyze example sketch
in the examples folder.

 The text
strings of the DumpResults method are stored in program memory rather than RAM
memory. However if you are not using the DumpResults method and you are running
out of program memory may wish to disable this function. In IRLib.h there is a
define

#define USE_DUMP

 You can
comment out that line was to save program memory. Note that this parameter also
affects the DumpResults method of the IRfrequency class as well.

 When a
decoder is created the pointer rawbuf is set equal to the global value irparams.rawbuf
which is the global buffer used by the receiver class. In some circumstances
you may wish to have your decoder use its own buffer so that you can resume
receiving data while working with the previously received data in your decoder.
You can change the buffer used by your decoder with the method

 void UseExtnBuf(void *P);

 You can
pass a pointer to your new buffer and then GetResults will copy the raw data
into this buffer instead of retaining it in the global buffer.

 On some
occasions you might wish to have more than one decoder and want to share the
data between different decoders. In that case you would use…

 void copyBuf
(IRdecodeBase *source);

 Note that
the pointer you pass to that method is the pointer to the entire decoder class
and not just the buffer. This method copies not only the values from rawbuf but
it also copies rawlen.

 The only
remaining method in the base class is “genericDecode”. It is a general-purpose
decoding routine used by many of the other protocols that share common
attributes. It will be documented in the section on adding additional protocols
to the library.

 In addition
to the base decoder class library also defines a function Pnames(IRTYPES type);
which returns a pointer to a string containing the name of the protocol such as
“Sony”, “NEC” etc. These strings are stored in flash memory or program memory
so that it does not use valuable data RAM memory. It is used by DumpResults and
may be useful to the end user as well.

 Most
protocols begin with an exceptionally long “mark” pulse which serves a number
of purposes. One of the reasons it is generally long is that receiver devices
have a special circuit called Automatic Gain Control or AGC that adaptively
boosts the signal received so that it can be cleanly decoded. It has been our
experience that when conditions are marginal such as a signal at an odd angle
or a weak signal, then it takes time for the AGC to adjust itself. The result
is the length of the opening “mark” is shortened. Many failed decodes occur
because the header is too short. Consumer electronics devices such as TVs,
DVD’s etc. only need to support a single protocol. So they do not need to
concern themselves with the duration of the header in order to decide what to
do. However our decoder classes all require that the received header pulse be
reasonably close to the specification. You can turn off the requirement that
the initial mark of the header is within normal tolerances. You do so by
setting the value IgnoreHeader=true; This can improve the ability to decode
weak signals by allowing the AGC to address.

Warning however if you’re using
multiple protocols, it can give you an accurate results of the protocol type.
Specifically the NEC and NECx protocols are identical except for the length of
the initial header mark. Therefore an NECx signal would be reported as NEC when
the IgnoreHeader parameter is true. Unfortunately the data values are
unaffected. There may be other as yet unsupported pairs of protocols which
cannot be distinguished from one another except by their header.

1.2.3. Specific Protocol Decoder Classes

 The seven
protocols shown below are each supported with their own decoder class. If you
only need to use one protocol you should create an instance of one of these
classes. The prototypes are in “IRLib.h” and the code itself is in “IRLib.cpp”.
Each contains only one method “decode()” but of course they also have access to
the data values and methods of the base class. The “decode()” method returns
true if the data received could be successfully decode as that protocols and it
returns false otherwise. The classes are…

class IRdecodeNEC: public virtual IRdecodeBase

{public: virtual bool decode(void);};

class IRdecodeSony: public virtual IRdecodeBase

{public: virtual bool decode(void);};

class IRdecodeRC5: public virtual IRdecodeRC

{public: virtual bool decode(void);};

class IRdecodeRC6: public virtual IRdecodeRC

{public: virtual bool decode(void);};

class IRdecodePanasonic_Old: public virtual IRdecodeBase

{public: virtual bool decode(void);};

class IRdecodeJVC: public virtual IRdecodeBase

{public: virtual bool decode(void);};

class IRdecodeNECx: public virtual IRdecodeBase

{public: virtual bool decode(void);};

 The NEC,
Sony and JVC protocols are used by those brands of equipment. The NECx is an
extension of NEC used by them and other manufacturers. The RC5 and RC6
protocols were developed by Phillips and used by a variety of manufacturers.
Panasonic_Old is used by cable boxes by Scientific Atlanta and Cisco mostly used
by Time Warner and BrightHouse cable systems. The example code included with
the library has similar routines which support DirecTV, Samsung36 and GIcable
the last of which is used by Motorola cable boxes. Also the rcmm used by
AT&T U-Verse is in the examples folder.

 The NEC
protocol uses a special sequence as a repeat code. With the NEC decoder detects
a repeat pattern that will return the value 0xffffffff. Other protocols
especially RC5 and RC6 makes use of a toggle bit. So if you decode successive
presses of the same button, the value you will receive will have one bit
inverted each time. However if you hold the same button down, the remote sends
repeated codes and the bit will not change. This library has no built-in
features for dealing with toggle bits. It treats those bits just like any other
bit in the stream. It generally does not hurt to leave the toggle bit either
set or reset all of the time.

 There is an
additional abstract class called IRdecodeRC which is the base class for both
RC5 and RC6. Unless we find another protocol based upon those, you will
probably never had of it directly.

 Library
also includes a hash code decoder class. It takes the array of data values and
attempts to create a unique 32-bit code based on whether each value is higher,
lower, or equal to the previous element of the array. It allows you to come up
with an identifying number for an unknown protocol function. However there is
no way to re-create the original data stream from that hash code. But for some
applications using an unknown protocol it can be useful.

 There is an
overall IRdecode class which combines all seven protocols into a single class.
It is defined as follows…

class IRdecode:

public virtual IRdecodeNEC,

public virtual IRdecodeSony,

public virtual IRdecodeRC5,

public virtual IRdecodeRC6,

public virtual IRdecodePanasonic_Old,

public virtual IRdecodeJVC,

public virtual IRdecodeNECx

{public: virtual bool decode(void);};

 It’s decode
method calls the decode methods of each of the seven defined protocols in that
order and if it finds any of them returning true then it returns true as well.
If all of the routines fail then it returns false. While this is useful when
using multiple protocols, it creates overhead because all of the code for each
of the protocols gets included in your sketch. If you are only using two or
three of these seven protocols then you are wasting a lot of code space. It is
recommended you create your own custom omnibus decode class that combines only
the protocols which you are using. You can either comment out the unused
protocols in this given IRdecode class or create your own custom class by
copying its definition and getting rid of the unnecessary protocols.

 Note that
the linking loader is smart enough not to include code from a protocol which
appears nowhere in your sketch. So if you do not create an instance of this
omnibus decoder, you should include only the protocols you actually use.

1.3 Sending Classes

 The decoder
classes defined by this library all return a binary data value, the number of
bits in that data value, and the type of protocol received. That information
can then be used to re-create the original signal and send it out using an
infrared LED. The sending classes allow you to re-create the signals that are
sent by remote controls using the protocols supported by this library.

1.3.1. Sending Overview

 The decoder
classes defined by this library all return a binary data value, the number of
bits in that data value, and the type of protocol received. That information
can then be used to re-create the original signal and send it out using an
infrared LED. There are a number of online references and other software such as
LIRC which provide lists of binary values for different kinds of remotes and
different functions. However they may have their own unique way of encoding the
data that may or may not be compatible with the values used by this library.
Therefore you should use the receiving and decoding classes to detect the
signal from a remote and obtain the value that this library creates. Then you
can use that value and the sending classes provided to re-create that stream
and control some device.

 You should
read the decoding overview section of this reference to familiarize yourself
with the protocols. We will not re-create that discussion here.

 The library
consists of an abstract base sending class and nine derived classes. Seven of
them are for the seven supported protocols. One of them sends raw data out of
the rawbuf array for use with unknown protocols and the ninth class is an
omnibus class which combines all seven of the supported protocols into a single
sending class.

 Note:
additional protocols are demonstrated in various example sketches provided with
this library. These examples illustrate how to extend the library using
object-oriented programming techniques without having to recompile it. It will
be our policy for the foreseeable future not to directly add additional
protocols to the library but to implement future protocols as example sketches.
We will not accept any pull requests which add additional protocols to the main
library. We will also not accept additional examples which do not implement
both sending and decoding classes.

1.3.2. IRsendBase Class

The prototypes for the sending
classes are in “IRLib.h” and the actual code is contained in “IRLib.cpp”. The
prototype is…

class IRsendBase

{

public:

 IRsendBase();

 void sendGeneric(unsigned
long data, unsigned char Num_Bits,

unsigned int Head_Mark,
unsigned int Head_Space,

unsigned int Mark_One,
unsigned int Mark_Zero,

unsigned int Space_One,
unsigned int Space_Zero,

unsigned char kHz, bool
Stop_Bits,

unsigned long
Max_Extent=0);

protected:

 void enableIROut(unsigned
char khz);

 VIRTUAL void
mark(unsigned int usec);

 VIRTUAL void
space(unsigned int usec);

 unsigned long Extent;

};

 The base
class is completely abstract. The constructor takes no parameters. The methods
are all for internal use or for the creation of derived classes.

1.3.3. Specific Protocol Sending Classes

 The seven
protocols shown below are each supported with their own sender class. If you
only need to use one protocol you should create an instance of one of these
classes. The prototypes are in “IRLib.h” and the code itself is in “IRLib.cpp”.
Each contains only one method “send()”. Although these derived classes have
access to the methods and data of the base class, the end-user has no need of
the other methods in the base class unless you are implementing an unsupported
protocol. They are all for internal use. The classes are…

class IRsendNEC: public virtual IRsendBase

{public: void send(unsigned long
data);};

class IRsendSony: public virtual IRsendBase

{public: void send(unsigned long data,
int nbits);};

class IRsendRC5: public virtual IRsendBase

{public: void send(unsigned long
data);};

class IRsendRC6: public virtual IRsendBase

{public: void send(unsigned long data,
unsigned char nbits);};

class IRsendPanasonic_Old: public virtual IRsendBase

{public: void send(unsigned long
data);};

class IRsendJVC: public virtual IRsendBase

{public: void send(unsigned long data,
bool First);};

class IRsendNECx: public virtual IRsendBase

{public: void send(unsigned long
data);};

 Each class
contains only one method a “send()” method. The first parameter is the data
value to be sent. Some protocols have an additional parameter.

 Note that
there is no “IRsendHash” class because there is no way to re-create the data
stream from the hash code created by the “IRdecodeHash” decoder class.

Sony and RC6 have different
versions which use different numbers of bits. Their second parameter is the
number of bits.

The JVC protocol sends data
differently whether it is the first code sent or it is a repeat of the same
code. In our experience you must send JVC codes twice. The first time as an
original code and then again as a repeated code. The second parameter is a bool
that should be true for the first sending and false for the second sending. See
the ”IRsendJVC” example program to see how.

 The NEC
protocol uses a special sequence as a repeat code. With the NEC decoder detects
a repeat pattern that will return the value 0xffffffff. If you pass that value
to the send method of the NEC class it will send a special repeat pattern used
by that protocol.

Other protocols especially RC5 and
RC6 makes use of a toggle bit. So if you decode successive presses of the same
button, the value received will have one bit inverted each time however if you
hold the same button down, the remote sends repeated codes and the bit will not
change. This library has no built-in features for dealing with toggle bits. It
treats those bits just like any other bit in the stream. It generally does not
hurt to leave the toggle bit either set or reset all of the time. The toggle
bit for RC5 is 0x0800 and for RC6 is 0x10000. You would do a bitwise exclusive
or with data to toggle that bit. See the “IRrecord” example code which shows
how to send any values on any of the supported protocols and it includes
support for toggle bits.

That example also shows how to use
an additional class to send raw data values for protocols that are unsupported.
If you receive an unknown protocol you can copy all of the values from the
rawbuf array and save them. They can then re-create the original data stream
using the IRsendRaw::send class and method. The prototype is shown here

class IRsendRaw: public virtual IRsendBase

{public: void send(unsigned int buf[],

unsigned char len,
unsigned char khz);};

 The first
parameter points to the array of values. You also need to specify the number of
intervals. The third parameter is the modulation frequency to use. If you do
not know the modulation frequency then we recommend that you use 38 for this
value. The receiver and decoder classes cannot normally detect the modulation
frequency. See the section on the IRfrequency class to see how to detect
modulation frequency. For more information see the section on implementing your
own protocols.

 Final class
is an omnibus class that will send any of the supported protocols. Its
prototype is…

class IRsend:

public virtual IRsendNEC,

public virtual IRsendSony,

public virtual IRsendRaw,

public virtual IRsendRC5,

public virtual IRsendRC6,

public virtual IRsendPanasonic_Old,

public virtual IRsendJVC,

public virtual IRsendNECx

{

public:

 void send(IRTYPES Type,
unsigned long data, unsigned int data2);

};

 Its send
method takes three parameters. The first is the protocol type. The second is
the binary data to be sent. The third value serves multiple purposes. For some
protocols is the number of bits. For other protocols it might be the first
flag. In the example code the Samsung36 example uses the third parameter to
contain part of the actual received data. That is because it is a 36 bit
protocol and we can only use at most 32 bits in an integer variable. For
protocols that did not need this third parameter you should set it to zero.

1.4 Hardware Considerations

 Obviously
for this library to be of any use you will need to add some hardware to your
Arduino. Specifically an IR LED possibly with a driver circuit for output and
some sort of infrared receiver for input purposes.

 Most of the
features of this library make use of various built-in hardware specific
features of the Arduino platforms. They make use of hardware interrupts and
built in the hardware timers. Because different Arduino platforms use different
base chips, even something as simple as “What pin do I connect to?” Can be a
difficult issue to resolve. Additionally more and more platforms beyond the
traditional 8-bit Atmel are being labeled with the term “Arduino compatible”
which makes the hardware issues even more complicated. We will address all of
these issues in the following sections.

1.4.1. Interrupts and Timers

 The hardware
specific portions of the library are based on the fact that it uses hardware
timers and hardware interrupts.

The IRrecvPCI and IRfrequency
receiver classes make use of pin change hardware interrupts. This is a hardware
feature which causes control of your program to branch immediately to a routine
that you specify whenever a specific input pin changes. Different platforms
have different numbers and locations available input pins which support this
type of interrupt. A chart showing which pins are available on which Arduino
platforms can be found in the section 1.1.4. IRrecvPCI Class. These interrupts
are all handled by the built in “attachInterrupt()” function. It is possible if
to use hardware interrupts to detect pin changes on a variety of other input
pins however this involves much more complicated setup procedure that directly
manipulates various processor pork registers. We have decided not to implement
such an extent capability.

The IRrecvLoop receiver class uses
no interrupts or timers so it allows you to get away from such hardware
dependency. It is not possible to write a looped version of IRfrequency that is
fast enough to measure frequency with reasonable accuracy. Therefore the only
way to measure input frequency is by use of the pin change interrupts.

Another area of hardware dependency
is the use of built in hardware timers. On the receiving end, the original
IRrecv receiving class uses the hardware timer to generate an interrupt every
50 µs. The interrupt service routine then polls the input pin to determine its
high or low state. While any input pin can be used for this purpose, you must
specify an available hardware timer to generate this timed interrupt.

 Atmel
processors like those used in Arduino boards can have up to six hardware timers
numbered 0 through 5. Note that some processors have a special high-speed
version of TIMER 4 which they call TIMER 4HS. TIMER 0 is always reserved by the
system for the “delay()”, “micros()” and “mills()” functions so it is never
used. This library attempts to detect the type of processor you are using and
it selects a default hardware timer.

In addition to using a hardware timer
to generate the 50 µs interrupts on the IRrecv receiver class, the same timer
is used to control the frequency of PWM output for sending signals. We send a PWM
signal to an output IR LED or an output driver circuit. While most uses of PWM signals
on Arduino platforms have a fixed frequency and a variable duty cycle, our
needs are for a fixed duty cycle of about 33% on with a variable frequency. There
are no built-in Arduino functions for manipulating the frequency so we have to
modify various hardware registers directly. We need to use frequencies ranging from
around 30 kHz to 57 kHz. The most accurate way to generate these frequencies is
with a hardware timer.

 Because the
hardware timer driven PWM features are limited to specific output pins, you
have a limited choice of pins to use for output. We can overcome this
limitation using a method called “bit-bang”.
Bit-bang software sits in a tight loop and directly turns the output pin
on and off. This allows you to use any available output pin. There are
limitations to the bit-bang method which we will discuss later.

 The
original IRremote library upon which this library is based only supported
Arduino Uno and similar devices which had the hardware TIMER 2 available. Later
more platforms and timers were added in the following branch of the original
library.

https://github.com/TKJElectronics/Arduino-IRremote/

 The support
for these additional timers and platforms became the basis of the IRLibTimer.h
file of this library. Although we had not personally tested all the platforms
supported in this file, we were confident they should work because they were
almost an exact copy of the branch which originally implemented them. However
the changes which were made to separate the use of receiving timers from
sending timers have not been tested on all of the platforms mentioned in this
file. There is a greater possibility these modifications could have broken
something no matter how careful we were in making these changes. We are
especially interested in hearing from users of various Teensy platforms to
ensure that our changes have not adversely affected your use of the code.

 The table
below shows the output pin number that you should use for output based upon the
platform, chip and timer. If a cell is blank it means that that particular
timer is not available on that chip.

 	
 Platform

 	
 Chip

 	

 	
 Timer

 	
 1

 	
 2

 	
 3

 	
 4

 	
 4HS

 	
 5

 	
 Arduino Mega

 	
 ATmega1280 &

 ATmega2560

 	
 11

 	
 9*

 	
 5

 	
 6

 	

 	
 46

 	
 Arduino Leonardo

 	
 ATmega32U4

 	
 9*

 	

 	
 5

 	

 	
 13

 	

 	
 Arduino Uno and older

 	
 ATmega328

 	
 9

 	
 3*

 	

 	

 	

 	

 	
 Teensy 1.0

 	
 AT90USB162

 	
 17*

 	

 	

 	

 	

 	

 	
 Teensy 2.0

 	
 ATmega32U4

 	
 14

 	

 	
 9

 	

 	
 10*

 	

 	
 Teensy++ 1.0 & 2.0

 	
 AT90USB646 &

 AT90USB1286

 	
 25

 	
 1*

 	
 14

 	

 	

 	

 	
 Saguino

 	
 ATmega644P &

 ATmega644

 	
 13

 	
 14*

 	

 	

 	

 	

 	
 Pinoccio

 	
 ATmega256RFR2

 	

 	

 	
 D3*

 	

 	

 	

 Entries
marked with * are the defaults. Note you will probably not need to change any
of the timer specifications unless you need to use particular pins or unless
you have a conflict with another library which makes use of hardware timers.
For example the default timer for Arduino Leonardo is TIMER1 which also happens
to be used by the Servo library. In such a circumstance you would need to
change to TIMER3 or TIMER4_HS.

1.4.2 Changing Defaults

 If you are
using one of the supported platforms and can use the default output specified
in the table above, then you can skip to section 1.4.3 and following which
discusses schematics for IR LED drivers and the connection of IR receivers.
However if you want to use a different timer, different output pin, or enable bit-bang
output then continue with this section of the documentation which discusses how
to change the defaults for timers and interrupts.

 As
mentioned previously, typically both the IRrecv 50 µs interrupt timing and the
PWM output timing make use of the same hardware timer. However the
implementation of bit-bang meant that we had to split these two functions.
While the default still remains that they will use the same timer, it is
theoretically possible use different hardware timers for input and output.
However given that timers are such a limited resource (some platforms only have
one or two) it is unlikely and we have not tested it.

We will begin by
setting the IR_SEND_TIMERxx definitions. The IR_RECV_TIMERxx will be
automatically set based on the sending timer. We will then show you how to override
that automatic selection if you wish to do so. We will also show you later how
to specify bit-bang sending side of timer sending. However because the
selection of the send timer also controls the selection of the receiving timer,
you should still choose a sending timer even if you’re going to override with
bit-bang.

You can change the
default IR_SEND_TIMERxx by commenting or uncommenting the proper lines in IRLibTimer.h.
The section which allows you to change timers begins at approximately line 50. It
attempts to detect your Arduino platform. For example if you have an Arduino
Mega and want to use something other than the default TIMER 2 you would look
for this section of the file…

/* Arduino Mega */

#if defined(__AVR_ATmega1280__) ||
defined(__AVR_ATmega2560__)

 //#define
IR_SEND_TIMER1 11

 #define
IR_SEND_TIMER2 9

 //#define
IR_SEND_TIMER3 5

 //#define
IR_SEND_TIMER4 6

 //#define
IR_SEND_TIMER5 46

 You
would put double slashes in front of the line for TIMER2 and remove the double
slashes from in front of one of the other timer definitions. The number
specified in the define is the pin number that you must use for output. While
you can choose which of the supported timers you which to use by adding or
removing slashes, do not change the numbers because they are required for those
particular timers.

 If
you are modifying this library for unsupported platforms, you should attempt to
implement hardware detection code in this section and specify the parameters
for your platform here.

 If
you intend to use the same timer for input as for output, then you need do
nothing else. The code will automatically set various IR_RECV_TIMERxx
definitions for you. If you wish to override which timer is used for receiving
and make it different than the sending timer, look at the IRLibTimer.h at
approximately line 125 for the following section.

//#define IR_RECV_TIMER_OVERRIDE

//#define IR_RECV_TIMER1

//#define IR_RECV_TIMER2

//#define IR_RECV_TIMER3

//#define IR_RECV_TIMER4

//#define IR_RECV_TIMER4_HS

//#define IR_RECV_TIMER5

 You
should un-comment the first line to specify that you want to override and you
should un-comment one and only one of the other lines. Note that there is no
testing done to ensure that one of these timers is available on your particular
platform. You need to look at the section for various IR_SEND_TIMERxx
specifications or look at the chart in the previous section to see what is
available for your platform. Use at your own risk.

An alternative to using a hardware
timer to control the output PWM frequency is the previously discussed method
known as “bit-bang”. We require frequencies from approximately 30 kHz to 57
kHz. Because we are dealing with relatively high frequencies, this method is
very difficult to implement and is not as accurate as using the built in
hardware timers. Most IR protocols specify frequencies within 0.1 kHz such as
NEC protocol which uses 38.4 kHz. However even when using the built-in timer
hardware, we only support integer frequencies so we rounded that down to even
38.0 kHz.

The bit-bang implementation is less
accurate than that. Our limited tests show that our bit-bang implementation
might produce results as much as +/-5% off of the target value. However our
experience is that the specification of frequency isn’t that critical. We were
still able to control TVs, VCRs, and cable boxes using bit-bang. We also
discovered there are numerous factors such as hardware interrupts that can
interfere with your results. We recommend you only use bit-bang on unsupported
platforms or if appropriate timers and PWM pins are unavailable.

You specify use of bit-bang output
in the file IRLibTimer.h in a section at approximately line 100. You will find
the following two lines of defines.

//#define IR_SEND_BIT_BANG
3

#define IR_BIT_BANG_OVERHEAD 10

 If the
IR_SEND_BIT_BANG definition is commented out as it is shown here, then the
library will use hardware timer driven PWM by default. If you remove the
slashes to un-comment the definition, it will use bit-bang output on the pin
number that you specify. In this example the default is pin number 3. The other
definition is a timing “fudge factor” that you may need to specify. You need
not comment it out when not using bit-bang. You can leave it alone.

Note that if you use
bit-bang sending and IRrecvLoop for receiving you will not need any hardware
timers or hardware interrupts. This may be especially useful for unsupported
platforms.

 Our
implementation of bit-bang output is dependent upon the “delayMicroseconds()”
function. If you are porting this code to a different platform, bit-bang will
only be as accurate as your limitation of this function. By the way unlike the
“micros()” function which is only accurate to 4 µs on 16 MHz processors or 8 µs
on 8 MHz processors, delayMicroseconds() attempts to be accurate to 1 µs
resolution. That still introduces some granularity into our results.

 We want to
reiterate that most users will not need to make any changes to IRLibTimer.h as
long as they connect their output hardware to a supported pin and they do not
have conflicts with other libraries.

1.4.3. IR LED Driver Components and Schematics

 The
simplest output circuit is simply connect the IR LED directly to the output pin
of the Arduino and then connect it to +5 volts with a current limiting resistor
of 100 ohms like this.

 Make sure
you get the polarity of the LED correct. The shorter of the two leads should
connect to ground. The longer lead connects to the resistor which in turn
connects to the Arduino.

 Note that
all of our examples presume +5 volt supplies however some Arduino systems run
at 3.3 volts. These schematics should also work at 3.3 volts however you might
want to slightly lower some of the resistor values.

 The output
pins of an Arduino cannot supply much current. This is especially true of some
newer Arduinos based on 16 and 32 bit ARM processors rather than the
traditional 8-bit AVR processors. A better solution is to use a driver
transistor. The schematic below shows a 2N2222 transistor but any similar NPN
transistor should work. The base of the transistor is connected to the output
of the Arduino using a 470 ohm resistor. The emitter is connected to ground
that the LED is connected between the +5V and the collector.

 Note that
the current passing through the LED will in all likelihood exceed the maximum
continuous current rating of the LED. However in our particular application we
have a modulated signal sending a sequence of pulses that only last a few
milliseconds total. As long as you’re not sending a continuous signal, the
circuit will work fine. Occasionally you will make up a special hardware board
which includes both output and input portions but for a particular application
you would be only using the input portion. Theoretically you could have an
output pin accidentally left on continuously and it would burn out your LED. If
you have an application that does input only but you have connected both input
and output circuits you should use the IRrecv::No_Output() method in the setup
portion of your sketch.

 I have had
good success with single transistor and single LED circuits over moderate
distances but if you really want power you can use multiple LEDs with multiple
driving transistors. The schematic below is loosely based on the output portion
of the famous TV-B-Gone device with its four output LEDs. Note that the
transistors and LEDs on the right half of the schematic can be eliminated if
you want a double transistor and double LED circuit instead of quadruple.

 The circuit
starts with an NPN transistor connected to the Arduino output pin via a 1K
resistor. That NPN then drives up to four PNP transistors that drive the LEDs.
Note that we have added a 33 ohm resistor to each LED to limit the current. This
resistor was added because I designed the circuit to be used with an IR remote
control toy helicopter that would continuously send signals to the helicopter.
If your application only has intermittent signals you can eliminate those 33
ohm resistors. Again any general purpose PNP switching transistor similar to
the one in the schematic should work okay.

 IR LEDs
come in different varieties. Some are narrow angle and some are wide-angle. We
happen to like the IR-333-A Everlight which is a 20° narrow angle LED available
here from Moser Electronics. For a wide-angle LED consider the
IR333C/H0/L10 Everlight which has a 40° viewing angle also available
here from Moser Electronics. Similar devices are available from Adafruit and RadioShack.
The one from Adafruit was 20° but the RadioShack model did not specify the
angle. I like to use a combination of narrow angle and wide-angle LEDs. Either
use one each in a two LED application or two each in a four LED application.

1.4.4 IR Receiver Components and Schematics

The schematic for a receiver
connection is much simpler than the driver circuit. You simply connect power
and ground to the device and connect the output pin of the device to an input
on your Arduino.

 Note that
all of our examples presume +5 volt supplies however some Arduino systems run
at 3.3 volts. These schematics should also work at 3.3 volts. It is critical
that you do not use a 5 volt supply on your receiver if you are connecting to a
3.3 volt system.

 For
ordinary receiving, any unused digital input pin can be used. Traditionally we
use pin 11 but any pin should work. For determining frequency, you are limited
to pins which have been change interrupts available. See the section on the IRfrequency
class for details.

 While
the schematic is trivial, the challenge is finding the proper device for
receiving. Although we deal with IR signals and being square waves with pulses
varying from a couple of hundred milliseconds up to a few thousand
milliseconds, in fact those pulses are actually modulated at a frequency from
somewhere between 30 kHz and 58 kHz. Different protocols use different
frequencies. The TSOP series of devices from Vishay are generally used. They
deem modulate this signal using a bandpass filter and automatic gain control.
There is a 4 or 5 digit number after the TSOP designation. The final two digits
designate the frequency. The next most significant two digits describe the type
of package. A most significant fifth digit may describe the type of AGC. Here
is a link to a selector guide from Vishay in PDF format. http://www.vishay.com/doc?49845

 Typically
you would use through hole packaging such as the TSOP44nn, TSOP84nn, or TSOP14nn.
The frequency in the last two digits depends on the protocol you wish to use. Most
hobbyists use 38 kHz such as TSOP4438. Frequencies outside the range 36-40 kHz
are rare so a 38 kHz device is a good average among the most common protocols. Although
they sell devices specifically to two different frequencies, the bandpass
filters devices are centered around the specific frequency but are generally wide
enough to allow a reasonable range of frequencies. One notable exception is the
Panasonic_Old used by Scientific Atlantic and Cisco cable boxes. They are used mostly
by Time Warner and Bright House cable systems. These systems use 57 kHz and on
occasion 38 kHz receivers have difficulty detecting those signals. We have
successfully used a part from RadioShack as seen here http://www.radioshack.com/product/index.jsp?productId=2049727

That particular
part when received from them does not look like the photo on the website. It
does not include the connector bracket that is depicted. It is described as a
38 kHz device and the packaging looks like the TSOP4438 but RadioShack does not
provide a manufacturers part number. They only provide their catalog number 276-640.
We have successfully used the RadioShack device at frequencies from 36 kHz to 57
kHz which is the entire range needed. A similar part from Adafruit Industries http://www.adafruit.com/products/157
designated as a TSOP38238 did not work at 57 kHz but if you do not need that
higher frequency, it works quite well.

 If
you are having difficulty receiving 57 kHz signals with a 38 kHz device, you
could purchase multiple receivers each tuned to a different frequency.
Similarly you might have a device which is receiving signals from different
directions. Perhaps you have a robot and you want to put three receivers
equally spaced around the outside of the robot that could receive IR signals
from any angle. For whatever reason that you might want multiple receivers, a
schematic such as the one shown below to be used to connect them.

 You
would connect the output pins of each receiver to a logical AND gate. Here we
are using a 74HCT21N quad input AND gate. You could use a 74HCT08N dual input
that come 4 to a package. The 74HCTxx series is a CMOS chip that will operate
at 5V TTL compatible levels suitable for use with Arduino at 5V. If you have
any unused input pins on the gate you should tie them to +5.

 You
may wonder why we are using an AND gate when we want to receive a signal
anytime any of the input devices are receiving a signal. You might think we
want a logical OR gate. However the devices are normally high output and go low
when a signal is received. Similarly our library is expecting active low
signals. The logical equation says that NOT(NOT(A) OR NOT(B))=A AND B. Thus we
use an AND gate.

 There
is one additional type of receiver we might want to use. The IRfrequency class
which is used to detect modulation frequencies requires a different type of
receiving device. The TSMP58000 device (note that is TSMP not TSOP) device
receives raw signals. It does not have a bandpass filter tuned to a particular
frequency and does not have automatic gain control. This type of devices
generally described as an “IR learner” instead of “IR receiver”. It can be used
to detect the modulation frequency of an incoming signal. This device must be
connected to a hardware interrupt pin such as those used with the IRrecvPCI
receiver class. See the section on the IRfrequency class.

2. Tutorials and Examples

When this
section is fully implemented it will provide tutorials on how to use this
library and explanation of all of the example programs in the examples
directory. For now we will simply include links to some tutorials we have already
posted in our blog on this website. Additional tutorials and examples will
appear here eventually.

§ IRLib Tutorial part 1: Hardware set up – 03/14/2013

§ IRLib Tutorial part 2: Controlling a
Servo Using an IR Remote – 03/14/2013

§ IRLib Tutorial part 3a: Sending IR Codes – 04/22/2013

§ IRLib Tutorial part 3b: Creating a
Virtual Remote Using Python – 05/04/2013

§ IRLib Tutorial part 3c: Python, PySerial
and PyGame Installation on Windows – 05/30/2013

§ IRLib Tutorial part 4: IR Remote Mouse – 06/10/2013

3. Implementing New Protocols

 This
section not yet implemented.

image004.emz
image004.emf

image005.png
XK 5K

5K

SOPnI

GND

+5V

Unused pins connected to +5V

out

TSOPn!

GND

1
2
4
5

out

TSOPni

GND

n56

out

o4

IC2A

74HCT21N

image002.emz
image002.emf

image003.emz
image003.emf

image001.emz
image001.emf

themedata.thmx

cover.jpeg
Users Manual for IRLib

Chris Young

=
=2
P
i
-
©)

lncent- o i il

